735 resultados para NEURAL DELAYS
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
The focus of this paper is the implementation of a spiking neural network to achieve sound localization; the model is based on the influential short paper by Jeffress in 1948. The SNN has a two-layer topology which can accommodate a limited number of angles in the azimuthal plane. The model accommodates multiple inter-neuron connections with associated delays, and a supervised STDP algorithm is applied to select the optimal pathway for sound localization. Also an analysis of previous relevant work in the area of auditory modelling supports this research.
Resumo:
In this paper we consider a neural field model comprised of two distinct populations of neurons, excitatory and inhibitory, for which both the velocities of action potential propagation and the time courses of synaptic processing are different. Using recently-developed techniques we construct the Evans function characterising the stability of both stationary and travelling wave solutions, under the assumption that the firing rate function is the Heaviside step. We find that these differences in timing for the two populations can cause instabilities of these solutions, leading to, for example, stationary breathers. We also analyse $quot;anti-pulses,$quot; a novel type of pattern for which all but a small interval of the domain (in moving coordinates) is active. These results extend previous work on neural fields with space dependent delays, and demonstrate the importance of considering the effects of the different time-courses of excitatory and inhibitory neural activity.
Resumo:
Neural field models of firing rate activity typically take the form of integral equations with space-dependent axonal delays. Under natural assumptions on the synaptic connectivity we show how one can derive an equivalent partial differential equation (PDE) model that properly treats the axonal delay terms of the integral formulation. Our analysis avoids the so-called long-wavelength approximation that has previously been used to formulate PDE models for neural activity in two spatial dimensions. Direct numerical simulations of this PDE model show instabilities of the homogeneous steady state that are in full agreement with a Turing instability analysis of the original integral model. We discuss the benefits of such a local model and its usefulness in modeling electrocortical activity. In particular we are able to treat "patchy'" connections, whereby a homogeneous and isotropic system is modulated in a spatially periodic fashion. In this case the emergence of a "lattice-directed" traveling wave predicted by a linear instability analysis is confirmed by the numerical simulation of an appropriate set of coupled PDEs. Article published and (c) American Physical Society 2007
Resumo:
The vast majority of maternal deaths in low-and middle-income countries are preventable. Delay in obtaining access to appropriate health care is a fairly common problem which can be improved. The objective of this study was to explore the association between delay in providing obstetric health care and severe maternal morbidity/death. This was a multicentre cross-sectional study, involving 27 referral obstetric facilities in all Brazilian regions between 2009 and 2010. All women admitted to the hospital with a pregnancy-related cause were screened, searching for potentially life-threatening conditions (PLTC), maternal death (MD) and maternal near-miss (MNM) cases, according to the WHO criteria. Data on delays were collected by medical chart review and interview with the medical staff. The prevalence of the three different types of delays was estimated according to the level of care and outcome of the complication. For factors associated with any delay, the PR and 95%CI controlled for cluster design were estimated. A total of 82,144 live births were screened, with 9,555 PLTC, MNM or MD cases prospectively identified. Overall, any type of delay was observed in 53.8% of cases; delay related to user factors was observed in 10.2%, 34.6% of delays were related to health service accessibility and 25.7% were related to quality of medical care. The occurrence of any delay was associated with increasing severity of maternal outcome: 52% in PLTC, 68.4% in MNM and 84.1% in MD. Although this was not a population-based study and the results could not be generalized, there was a very clear and significant association between frequency of delay and severity of outcome, suggesting that timely and proper management are related to survival.
Resumo:
Behavioral adaptiveness to different situations as well as behavioral individuality result from the interrelations between environmental sitmuli and the responses of an organism.These kind of interrelationships also shape the neural circuits as well as characterize the plasticity and the neural individuality of the organism. Studies on neural plasticity may analyze changes in neural circuitry after environmental manipulations or changes in behavior after lesions in the nervous system. Issues on neural plasticity and recovery of function refer both to physiology and behavior as well as to the subjacent mechanisms related to morphology, biochemistry and genetics. They may be approached at the systemic, behavioral, cellular and molecular levels. This work intends to characterize these kinds of studies pointing to their relations with the analyis of behavior and learning.The analysis of how the environmental-organismic interrelationships affect the neural substrates of behavior is pointed as a very stimulating area for investigation.
Resumo:
Epidemiological studies have suggested that cola beverage consumption may affect bone metabolism and increase bone fracture risk. Experimental evidence linking cola beverage consumption to deleterious effects on bone is lacking. Herein, we investigated whether cola beverage consumption from weaning to early puberty delays the rate of reparative bone formation inside the socket of an extracted tooth in rats. Twenty male Wistar rats received cola beverage (cola group) or tap water (control group) ad libitum from the age of 23 days until tooth extraction at 42 days and euthanasia 2 and 3 weeks later. The neoformed bone volume inside the alveolar socket was estimated in semi-serial longitudinal sections using a quantitative differential point-counting method. Histological examination suggested a decrease in the osteogenic process within the tooth sockets of rats from both cola groups, which had thinner and sparser new bone trabeculae. Histometric data confirmed that alveolar bone healing was significantly delayed in cola-fed rats at three weeks after tooth extraction (ANOVA, p = 0.0006, followed by Tukey's test, p < 0.01). Although the results of studies in rats cannot be extrapolated directly to human clinical dentistry, the present study provides evidence that cola beverage consumption negatively affect maxillary bone formation.
Resumo:
The arterial partial pressure (P CO2) of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.
Resumo:
Happy emotional states have not been extensively explored in functional magnetic resonance imaging studies using autobiographic recall paradigms. We investigated the brain circuitry engaged during induction of happiness by standardized script-driven autobiographical recall in 11 healthy subjects (6 males), aged 32.4 ± 7.2 years, without physical or psychiatric disorders, selected according to their ability to vividly recall personal experiences. Blood oxygen level-dependent (BOLD) changes were recorded during auditory presentation of personal scripts of happiness, neutral content and negative emotional content (irritability). The same uniform structure was used for the cueing narratives of both emotionally salient and neutral conditions, in order to decrease the variability of findings. In the happiness relative to the neutral condition, there was an increased BOLD signal in the left dorsal prefrontal cortex and anterior insula, thalamus bilaterally, left hypothalamus, left anterior cingulate gyrus, and midportions of the left middle temporal gyrus (P < 0.05, corrected for multiple comparisons). Relative to the irritability condition, the happiness condition showed increased activity in the left insula, thalamus and hypothalamus, and in anterior and midportions of the inferior and middle temporal gyri bilaterally (P < 0.05, corrected), varying in size between 13 and 64 voxels. Findings of happiness-related increased activity in prefrontal and subcortical regions extend the results of previous functional imaging studies of autobiographical recall. The BOLD signal changes identified reflect general aspects of emotional processing, emotional control, and the processing of sensory and bodily signals associated with internally generated feelings of happiness. These results reinforce the notion that happiness induction engages a wide network of brain regions.
Resumo:
PURPOSE: The main goal of this study was to develop and compare two different techniques for classification of specific types of corneal shapes when Zernike coefficients are used as inputs. A feed-forward artificial Neural Network (NN) and discriminant analysis (DA) techniques were used. METHODS: The inputs both for the NN and DA were the first 15 standard Zernike coefficients for 80 previously classified corneal elevation data files from an Eyesys System 2000 Videokeratograph (VK), installed at the Departamento de Oftalmologia of the Escola Paulista de Medicina, São Paulo. The NN had 5 output neurons which were associated with 5 typical corneal shapes: keratoconus, with-the-rule astigmatism, against-the-rule astigmatism, "regular" or "normal" shape and post-PRK. RESULTS: The NN and DA responses were statistically analyzed in terms of precision ([true positive+true negative]/total number of cases). Mean overall results for all cases for the NN and DA techniques were, respectively, 94% and 84.8%. CONCLUSION: Although we used a relatively small database, results obtained in the present study indicate that Zernike polynomials as descriptors of corneal shape may be a reliable parameter as input data for diagnostic automation of VK maps, using either NN or DA.
Resumo:
Classical and operant conditioning principles, such as the behavioral discrepancy-derived assumption that reinforcement always selects antecedent stimulus and response relations, have been studied at the neural level, mainly by observing the strengthening of neuronal responses or synaptic connections. A review of the literature on the neural basis of behavior provided extensive scientific data that indicate a synthesis between the two conditioning processes based mainly on stimulus control in learning tasks. The resulting analysis revealed the following aspects. Dopamine acts as a behavioral discrepancy signal in the midbrain pathway of positive reinforcement, leading toward the nucleus accumbens. Dopamine modulates both types of conditioning in the Aplysia mollusk and in mammals. In vivo and in vitro mollusk preparations show convergence of both types of conditioning in the same motor neuron. Frontal cortical neurons are involved in behavioral discrimination in reversal and extinction procedures, and these neurons preferentially deliver glutamate through conditioned stimulus or discriminative stimulus pathways. Discriminative neural responses can reliably precede operant movements and can also be common to stimuli that share complex symbolic relations. The present article discusses convergent and divergent points between conditioning paradigms at the neural level of analysis to advance our knowledge on reinforcement.
Resumo:
Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.
Resumo:
This work proposes a new approach using a committee machine of artificial neural networks to classify masses found in mammograms as benign or malignant. Three shape factors, three edge-sharpness measures, and 14 texture measures are used for the classification of 20 regions of interest (ROIs) related to malignant tumors and 37 ROIs related to benign masses. A group of multilayer perceptrons (MLPs) is employed as a committee machine of neural network classifiers. The classification results are reached by combining the responses of the individual classifiers. Experiments involving changes in the learning algorithm of the committee machine are conducted. The classification accuracy is evaluated using the area A. under the receiver operating characteristics (ROC) curve. The A, result for the committee machine is compared with the A, results obtained using MLPs and single-layer perceptrons (SLPs), as well as a linear discriminant analysis (LDA) classifier Tests are carried out using the student's t-distribution. The committee machine classifier outperforms the MLP SLP, and LDA classifiers in the following cases: with the shape measure of spiculation index, the A, values of the four methods are, in order 0.93, 0.84, 0.75, and 0.76; and with the edge-sharpness measure of acutance, the values are 0.79, 0.70, 0.69, and 0.74. Although the features with which improvement is obtained with the committee machines are not the same as those that provided the maximal value of A(z) (A(z) = 0.99 with some shape features, with or without the committee machine), they correspond to features that are not critically dependent on the accuracy of the boundaries of the masses, which is an important result. (c) 2008 SPIE and IS&T.
Resumo:
The presence of stem cell characteristics in glioma cells raises the possibility that mechanisms promoting the maintenance and self-renewal of tissue specific stem cells have a similar function in tumor cells. Here we characterized human gliomas of various malignancy grades for the expression of stem cell regulatory proteins. We show that cells in high grade glioma co-express an array of markers defining neural stem cells (NSCs) and that these proteins can fulfill similar functions in tumor cells as in NSCs. However, in contrast to NSCs glioma cells co-express neural proteins together with pluripotent stem cell markers, including the transcription factors Oct4, Sox2, Nanog and Klf4. In line with this finding, in high grade gliomas mesodermal-and endodermal-specific transcription factors were detected together with neural proteins, a combination of lineage markers not normally present in the central nervous system. Persistent presence of pluripotent stem cell traits could only be detected in solid tumors, and observations based on in vitro studies and xenograft transplantations in mice imply that this presence is dependent on the combined activity of intrinsic and extrinsic regulatory cues. Together these results demonstrate a general deregulated expression of neural and pluripotent stem cell traits in malignant human gliomas, and indicate that stem cell regulatory factors may provide significant targets for therapeutic strategies.
Resumo:
Exercise training (ET) is a coadjuvant therapy in preventive cardiology. It delays cardiac dysfunction and exercise intolerance in heart failure (HF); however, the molecular mechanisms underlying its cardioprotection are poorly understood. We tested the hypothesis that ET would prevent Ca2+ handling abnormalities and ventricular dysfunction in sympathetic hyperactivity-induced HF mice. A cohort of male wildtype (WT) and congenic (alpha 2A/alpha 2C)-adrenoceptor knockout ((alpha 2A/alpha 2C)ARKO) mice with C57BL6/J genetic background (3-5 mo of age) were randomly assigned into untrained and exercise-trained groups. ET consisted of 8-wk swimming session, 60 min, 5 days/wk. Fractional shortening (FS) was assessed by two-dimensional guided M-mode echocardiography. The protein expression of ryanodine receptor (RyR), phospho-Ser(2809)-RyR, sarcoplasmic reticulum Ca2+ ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLN), phospho-Ser(16)-PLN, and phospho-Thr(17)-PLN were analyzed by Western blotting. At 3 mo of age, no significant difference in FS and exercise tolerance was observed between WT and (alpha 2A/alpha 2C)ARKO mice. At 5 mo, when cardiac dysfunction is associated with lung edema and increased plasma norepinephrine levels, (alpha 2A/alpha 2C)ARKO mice presented reduced FS paralleled by decreased SERCA2 (26%) and NCX (34%). Conversely, (alpha 2A/alpha 2C)ARKO mice displayed increased phospho-Ser(16)-PLN (76%) and phospho-Ser(2809)-RyR (49%). ET in (alpha 2A/alpha 2C)ARKO mice prevented exercise intolerance, ventricular dysfunction, and decreased plasma norepinephrine. ET significantly increased the expression of SERCA2 (58%) and phospho-Ser(16)-PLN (30%) while it restored the expression of phospho-Ser(2809)-RyR to WT levels. Collectively, we provide evidence that improved net balance of Ca2+ handling proteins paralleled by a decreased sympathetic activity on ET are, at least in part, compensatory mechanisms against deteriorating ventricular function in HF.