428 resultados para N. crassa


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Byrsonima crassa is a plant pertaining to the Brazilian central savannah-like belt of vegetation and popularly used for the treatment of gastric dysfunctions and diarrhoea. The methanol extract contains catechin, tannins, terpenes and flavonoids; both mutagenic potential and antioxidant properties have been ascribed to flavonoids. The mutagenicity of some flavonoids is believed to be associated with the formation of reactive oxygen species and seems to depend on the number and position of hydroxyl groups. In the present study the mutagenic activity of the methanol, chloroform and 80% aqueous methanol extracts, as well as acetate and aqueous sub-fractions, of this medicinal plant were evaluated by Salmonella typhimurium assay, using strains 100, TA98, TA102 and TA97a, and in mouse reticulocytes. The results showed mutagenic activity of the methanolic extract in the TA98 strain without S9, but no mutagenicity to mouse cells in any of the extracts. The acetate fraction showed strong signs of mutagenicity without S9, suggesting that in this enriched fraction were concentrated the compounds that induced mutagenic activity. The aqueous fraction showed no mutagenic activity. The TLC and HSCCC analyses of the acetate fraction with some standard compounds permitted the isolation of the quercetin-3-O-beta-D-galactopyranoside, quercetin-3-O-alpha-L-arabinopyranoside, amentoflavone, methyl gallate and (+)-catechin, of which only the amentoflavone exhibited positive mutagenicity to TA98 (+S9, -S9). (c) 2006 Elsevier B.V.. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Byrsonima crassa Niedenzu (IK) (Malpighiaceae) is used in Brazilian folk medicine for the treatment of diseases related mainly to gastric ulcers. In this study, we evaluated the potential antiulcerogenic effect of three different extracts obtained from the leaves of Byrsonima crassa namely hydromethanolic (80% MeOH), methanolic (MeOH) and chloroformic extracts (CHCl3). The oral administration (250, 500 and 1000 mg/kg) of all the extracts reduced the formation of lesions associated with HCl/ethanol administration in mice. The 80% MeOH extract significantly reduced the incidence of gastric lesions by 74, 78 and 92% at doses of 250,500 and 1000 mg/kg, respectively (P < 0.01). The MeOH extract reduced the ulceration by 93 and 99% only at the doses of 500 and 1000 mg/kg (P < 0.01). The lower gastroprotective action (69%) was observed when animals were treated with CHCl3 extract at the dose of 1000 mg/kg (P < 0.01). Phytochemical investigation of Byrsonima crassa afforded five known substances: quercetin-3-O-beta-D-galactopyranoside, quercetin-3-O-alpha-L-arabinopyranoside, the biflavonoid amentoflavone, (+)-catechin and (-)-epicatechin. The presence of these phenolic compounds may probably explain the antiulcerogenic effect of the extracts of Byrsonima crassa leaves. (C) 2004 Elsevier B.V.. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The methanolic extract of the leaves of the medicinal plant Byrsonima crassa (Malpighiaceae) contain flavonoids with antioxidant activity. They were separated in a preparative scale using high-speed counter-current chromatography. The optimum solvent system used was composed of a mixture of ethyl acetate-n-propanol-water (140:8:80 (v/v/v)) and led to a successful separation between monoglucosilated flavonoids (quercetin-3-O-alpha-L-arabinoside, quercetin-3-O-beta-D-galactoside) and the biflavonoid amentoflavone in only 3.5 h. The purities of quercetin-3-O-alpha-L-arabinoside (95 mg), quercetin-3-O-beta-D-galactoside (16 mg) and the biflavonoid amentoflavone (114 mg) were all isolated at purity over 95%. Identification was performed by H-1 NMR, C-13 NMR and UV analyses. (C) 2004 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de ­vel Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gene encoding glycogen synthase in Neurospora crassa (gsn) is transcriptionally down-regulated when mycelium is exposed to a heat shock from 30 to 45 degrees C. The gsn promoter has one stress response element (STRE) motif that is specifically bound by heat shock activated nuclear proteins. In this work, we used biochemical approaches together with mass spectrometric analysis to identify the proteins that bind to the STRE motif and could participate in the gsn transcription regulation during heat shock. Crude nuclear extract of heat-shocked mycelium was prepared and fractionated by affinity chromatography. The fractions exhibiting DNA-binding activity were identified by electrophoretic mobility shift assay (EMSA) using as probe a DNA fragment containing the STRE motif DNA-protein binding activity was confirmed by Southwestern analysis. The molecular mass (MM) of proteins was estimated by fractionating the crude nuclear extract by SDS-PAGE followed by EMSA analysis of the proteins corresponding to different MM intervals. Binding activity was detected at the 30-50 MM kDa interval. Fractionation of the crude nuclear proteins by IEF followed by EMSA analysis led to the identification of two active fractions belonging to the pIs intervals 3.54-4.08 and 6.77-7.31. The proteins comprising the MM and pI intervals previously identified were excised from a 2-DE gel, and subjected to mass spectrometric analysis (MALDI-TOF/TOF) after tryptic digestion. The proteins were identified by search against the MIPS and MIT N. crassa databases and five promising candidates were identified. Their structural characteristics and putative roles in the gsn transcription regulation are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both P-i-repressible acid phosphatases, IIb (mycelial) and IIc (extracellular), synthesized by Neurospora crassa and purified to apparent homogeneity by 7.5% PAGE, are monomers, are inhibited by 2 mM ZnCl2 and are nonspecifically stimulated by salts. However, the IIc form is activated by p-nitrophenylphosphate (in a negative cooperativity effect with a K-0.5 of 2.5 mM) whereas form IIb shows Michaelis kinetics, with a K-m of 0.5 mM. Thus, since both enzymatic forms may be expressed by the same gene (pho-3), it is possible that post-translational modifications lead to the excretion of an enzymatic form with altered Michaelis kinetics compared with the enzymatic form retained by the mycelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogenin acts in the initiation step of glycogen biosynthesis by catalyzing a self-glucosylation reaction. In a previous work [de Paula et al., Arch. Biochem. Biophys. 435 (2005) 112-124], we described the isolation of the cDNA gnn, which encodes the protein glycogenin (GNN) in Neurospora crassa. This work presents a set of biochemical and functional studies confirming the GNN role in glycogen biosynthesis. Kinetic experiments showed a very low GNN K-m (4.41 mu M) for the substrate UDP-glucose. Recombinant GNN was produced in Escherichia coli and analysis by mass spectroscopy identified a peptide containing an oligosaccharide chain attached to Tyr196 residue. Site-directed mutagenesis and functional complementation of a Saccharomyces cerevisiae mutant strain confirmed the participation of this residue in the GNN self-glucosylation and indicated the Tyr198 residue as an additional, although less active, glucosylation site. The physical interaction between GNN and glycogen synthase (GSN) was analyzed by the two-hybrid assay. While the entire GSN was required for full interaction, the C-terminus in GNN was more important. Furthermore, mutation in the GNN glucosylation sites did not impair the interaction with GSN. (c) 2005 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogen synthases catalyze the transfer of a glucosyl moiety from a nucleotide phosphosugar to a nascent glycogen chain via an alpha1-->4 linkage. Although many genes coding for glycogen synthases have been described, the enzymes from rabbit and yeast are the best characterized. The fungus Neurospora crassa accumulates glycogen during exponential growth, and mobilizes it at the onset of stationary phase, or when placed at high temperature or starved for carbon. Through a PCR methodology, the gsn cDNA coding for the N. crassa glycogen synthase was isolated, and the amino acid sequence of the protein was deduced. The product of the cDNA seems to be the only glycogen synthase present in N. crassa. Characterization of the gsn cDNA revealed that it codes for a 706-amino acids protein, which is very similar to mammalian and yeast glycogen synthases. Gene expression increased during exponential growth, reaching its maximal level at the end of the exponential growth phase, which is consistent with the pattern of glycogen synthase activity and glycogen level. Expression of the gsn is highly regulated at the transcriptional level. Under culture conditions that induce heat shock, conidiation, and carbon starvation, expression of the gsn gene was decreased, and glycogen synthase activity and glycogen content behaved similarly.