327 resultados para N-alkylation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notwithstanding advances in modern chemical methods, the selective installation of sterically encumbered carbon stereocenters, in particular all-carbon quaternary centers, remains an unsolved problem in organic chemistry. The prevalence of all-carbon quaternary centers in biologically active natural products and pharmaceutical compounds provides a strong impetus to address current limitations in the state of the art of their generation. This thesis presents four related projects, all of which share in the goal of constructing highly-congested carbon centers in a stereoselective manner, and in the use of transition-metal catalyzed alkylation as a means to address that goal.

The first research described is an extension of allylic alkylation methodology previously developed in the Stoltz group to small, strained rings. This research constitutes the first transition metal-catalyzed enantioselective α-alkylation of cyclobutanones. Under Pd-catalysis, this chemistry affords all–carbon α-quaternary cyclobutanones in good to excellent yields and enantioselectivities.

Next is described our development of a (trimethylsilyl)ethyl β-ketoester class of enolate precursors, and their application in palladium–catalyzed asymmetric allylic alkylation to yield a variety of α-quaternary ketones and lactams. Independent coupling partner synthesis engenders enhanced allyl substrate scope relative to allyl β-ketoester substrates; highly functionalized α-quaternary ketones generated by the union of our fluoride-triggered β-ketoesters and sensitive allylic alkylation coupling partners serve to demonstrate the utility of this method for complex fragment coupling.

Lastly, our development of an Ir-catalyzed asymmetric allylic alkylation of cyclic β-ketoesters to afford highly congested, vicinal stereocenters comprised of tertiary and all-carbon quaternary centers with outstanding regio-, diastereo-, and enantiocontrol is detailed. Implementation of a subsequent Pd-catalyzed alkylation affords dialkylated products with pinpoint stereochemical control of both chiral centers. The chemistry is then extended to include acyclic β-ketoesters and similar levels of selective and functional group tolerance are observed. Critical to the successful development of this method was the employment of iridium catalysis in concert with N-aryl-phosphoramidite ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of 3-bromomethyl-1,2-benzisothiazole and its 5- and 7-methoxy derivatives has been accomplished. In alkylation reactions, these bromides were found to behave much like benzylic bromides; and in this respect they have been used successfully to alkylate strongly basic enolates, thus introducing a latent β-phenylethyl moiety in situations where β-phenylethyl bromide and phenacyl bromide give at best poor yields of alkylated product. In several cases, degradative procedures have been devised to remove the heteroatoms from the benzisothiazoyl system to provide the actual β-phenylethyl fragment; however, no generally applicable degradative method has yet been developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of ethylbenzene from the alkylation of dilute ethylene in fee off-gases with benzene has been commercialized in China over a newly developed catalyst composed of ZSM-5/ZSM-11 co-crystallized zeolite. The duration of an operation cycle of the commercial catalyst could be as long as 180 days. The conversion of ethylene could attain higher than 95%, while the amount of coke deposited on the catalyst was only about 10 wt.%. Thermogravimetry (TG) was used to study the coking behavior of the catalyst during the alkylation of fee off-gas with benzene to ethylbenzene. Based on effects of reaction time, reaction temperature, reactants and products on coking during the alkylation process, it is found that the coking rate during the alkylation procedure follows the order: ethylbenzene > ethylene > propylene > benzene for single component, and benzene-ethylene > benzene-propylene for bi-components under the same reaction condition. Furthermore, the coking kinetic equations for benzene-ethylene, benzene-propylene and ethylbenzene were established. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MCM-22 zeolite with mid-strong acidity and openings of 10-membered ring channels may obtain a high catalytic activity and selectivity for alkylation of toluene with methanol. The acidic sites, for catalyzing alkylation of toluene with methanol, are weaker than that for catalyzing toluene disproportionation. Compared with silicon as a modifier, modification of MCM-22 with La(NO3)(3) is a promising way to improve the catalytic selectivity of para-xylene. In addition, the experimental results also clearly indicate the characteristics of MCM-22 structure consisting of large intracrystalline cages, some of which may locate on surface of MCM-22. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chiral ferrocene-based phosphine-imine ligands 1-3 and sulfur-imine ligand 4 were applied in the palladium-catalyzed asymmetric allylic alkylation of cycloalkenyl esters. The results revealed that the substitutents in aryl ring, ferrocenylmethyl and benzyliene position strongly affected the enantioselective induction of phosphine-imine ligands, and the most stereoselective ligand was ferrocenylphosphine-imine 1b with a nitro group in the meta-position of phenyl ring. Under the optimized condition, up to 91% (enantiomeric excesses) e.e. of cyclic alkylation product was obtained by the use of 1b. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of acid strength of zeolites in liquid-phase alkylation of benzene with ethylene was studied over beta, MCM-22, and USY zeolites by means of adsorbing NH3 at different temperatures. The strong acid sites are active centers, while the weak acid sites are inactive. The selectivity behavior of the strong acid sites varies with the relative acid strength as well as the types of the zeolites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some novel ferrocenylphosphine-amidine ligands with central and planar chirality were prepared from (R,S-p)-PPFNH2-R 3 and its diastereomer (S,S-p)-PPFNH2 3a. The efficiency and diastereomeric impact of these ferrocenylphosphine-amidine ligands in the palladium-catalyzed asymmetric allylic substitution was examined, and up to 96% e.e. with 98% yield was achieved by the use of ligand (R,S-p)-4a with a methyl group in the amidino moiety. The results also indicated that (R)-central chirality and (S-p)-planar chirality in these ferrocenylphosphine-amidine ligands were matched for the palladium-catalyzed asymmetric allylic alkylation. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of strong solid acids composed of WO3/ZrO2 were prepared. Their crystal structure, surface state, and acidity were determined by the methods of X-ray diffraction, thermal gravimetric and differential thermal analysis, temperature-programmed reduction, laser Raman, and acidity measurement. The results revealed that ZrO2 in WO3/ZrO2 existed mainly in the tetragonal phase, the addition of WO3 plays an important role in stabilizing the tetragonal phase of ZrO2, and all of the samples possessed large surface areas. WO3 in WO3/ZrO2 is mainly monolayer dispersed, and a small amount crystallized on the ZrO2 surface and partly reacted with ZrO2 to form the bond of Zr-O-W, acting as the strong solid acid center. The catalytic properties of WO3/ZrO2 strong solid;acids for alkylation of isobutane with butene at different conditions were investigated. They had a better reaction performance than other strong solid acids; a parallel relationship could be drawn between the catalytic activity and the acid amounts as well as the acidic strength of the catalysts.