135 resultados para Multiprocessor
Resumo:
We present a 12*(1+|R|/(4m))-speed algorithm for scheduling constrained-deadline sporadic real-time tasks on a multiprocessor comprising m processors where a task may request one of |R| sequentially-reusable shared resources.
Resumo:
In this paper we consider global fixed-priority preemptive multiprocessor scheduling of constrained-deadline sporadic tasks that share resources in a non-nested manner. We develop a novel resource-sharing protocol and a corresponding schedulability test for this system. We also develop the first schedulability analysis of priority inheritance protocol for the aforementioned system. Finally, we show that these protocols are efficient (based on the developed schedulability tests) for a class of priority-assignments called reasonable priority-assignments.
Resumo:
Scheduling of constrained deadline sporadic task systems on multiprocessor platforms is an area which has received much attention in the recent past. It is widely believed that finding an optimal scheduler is hard, and therefore most studies have focused on developing algorithms with good processor utilization bounds. These algorithms can be broadly classified into two categories: partitioned scheduling in which tasks are statically assigned to individual processors, and global scheduling in which each task is allowed to execute on any processor in the platform. In this paper we consider a third, more general, approach called cluster-based scheduling. In this approach each task is statically assigned to a processor cluster, tasks in each cluster are globally scheduled among themselves, and clusters in turn are scheduled on the multiprocessor platform. We develop techniques to support such cluster-based scheduling algorithms, and also consider properties that minimize total processor utilization of individual clusters. In the last part of this paper, we develop new virtual cluster-based scheduling algorithms. For implicit deadline sporadic task systems, we develop an optimal scheduling algorithm that is neither Pfair nor ERfair. We also show that the processor utilization bound of us-edf{m/(2m−1)} can be improved by using virtual clustering. Since neither partitioned nor global strategies dominate over the other, cluster-based scheduling is a natural direction for research towards achieving improved processor utilization bounds.
Resumo:
We present a 12(1 + 3R/(4m)) competitive algorithm for scheduling implicit-deadline sporadic tasks on a platform comprising m processors, where a task may request one of R shared resources.
Resumo:
It has been widely studied how to schedule real-time tasks on multiprocessor platforms. Several studies find optimal scheduling policies for implicit deadline task systems, but it is hard to understand how each policy utilizes the two important aspects of scheduling real-time tasks on multiprocessors:inter-job concurrency and job urgency. In this paper, we introduce a new scheduling policy that considers these two properties. We prove that the policy is optimal for the special case when the execution time of all tasks are equally one and deadlines are implicit, and observe that the policy is a new concept in that it is not an instance of Pfair or ERfair. It remains open to find a schedulability condition for general task systems under our scheduling policy.
Resumo:
Consider the problem of designing an algorithm with a high utilisation bound for scheduling sporadic tasks with implicit deadlines on identical processors. A task is characterised by its minimum interarrival time and its execution time. Task preemption and migration is permitted. Still, low preemption and migration counts are desirable. We formulate an algorithm with a utilisation bound no less than 66.¯6%, characterised by worst-case preemption counts comparing favorably against the state-of-the-art.
Resumo:
The advent of multicore systems has renewed the interest of research community on real-time scheduling on multiprocessor systems. Real-time scheduling theory for uniprocessors is considered a mature research field, but real-time scheduling theory for multiprocessors is an emerging research field. Being part of this research community I have decided to implement the Sporadic Multiprocessor Linux Scheduler that implements a new real-time scheduling algorithm, which was designed to schedule real-time sporadic tasks on multiprocessor systems. This technical reports describes the implementation of the SMLS.
Resumo:
We consider the problem of scheduling a multi-mode real-time system upon identical multiprocessor platforms. Since it is a multi-mode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. We propose two protocols which ensure that all the expected requirements are met during every transition between every pair of operating modes of the system. Moreover, we prove the correctness of our proposed algorithms by extending the theory about the makespan determination problem.
Resumo:
Consider global fixed-priority preemptive multiprocessor scheduling of implicit-deadline sporadic tasks. I conjecture that the utilization bound of SM-US(√2−1) is √2-1.
Resumo:
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, its characteristics upon multiprocessor platforms have been little studied until now. Orthogonally, it has remained open how to efficiently schedule general task systems, including constrained deadline task systems, upon multiprocessors. Recent studies have introduced zero laxity (ZL) policy, which assigns a higher priority to a task with zero laxity, as a promising scheduling approach for such systems (e.g., EDZL). Towards understanding the importance of laxity in multiprocessor scheduling, this paper investigates the characteristics of ZL policy and presents the first ZL schedulability test for any work-conserving scheduling algorithm that employs this policy. It then investigates the characteristics of LLF scheduling, which also employs the ZL policy, and derives the first LLF-specific schedulability test on multiprocessors. It is shown that the proposed LLF test dominates the ZL test as well as the state-of-art EDZL test.
Resumo:
Developing an efficient server-based real-time scheduling solution that supports dynamic task-level parallelism is now relevant to even the desktop and embedded domains and no longer only to the high performance computing market niche. This paper proposes a novel approach that combines the constantbandwidth server abstraction with a work-stealing load balancing scheme which, while ensuring isolation among tasks, enables a task to be executed on more than one processor at a given time instant.
Resumo:
Consider the problem of scheduling real-time tasks on a multiprocessor with the goal of meeting deadlines. Tasks arrive sporadically and have implicit deadlines, that is, the deadline of a task is equal to its minimum inter-arrival time. Consider this problem to be solved with global static-priority scheduling. We present a priority-assignment scheme with the property that if at most 38% of the processing capacity is requested then all deadlines are met.
Resumo:
Consider the problem of scheduling n sporadic tasks so as to meet deadlines on m identical processors. A task is characterised by its minimum interarrival time and its worst-case execution time. Tasks are preemptible and may migrate between processors. We propose an algorithm with limited migration, configurable for a utilisation bound of 88% with few preemptions (and arbitrarily close to 100% with more preemptions).
Resumo:
This paper studies static-priority preemptive scheduling on a multiprocessor using partitioned scheduling. We propose a new scheduling algorithm and prove that if the proposed algorithm is used and if less than 50% of the capacity is requested then all deadlines are met. It is known that for every static-priority multiprocessor scheduling algorithm, there is a task set that misses a deadline although the requested capacity is arbitrary close to 50%.
Resumo:
Consider the problem of scheduling a set of periodically arriving tasks on a multiprocessor with the goal of meeting deadlines. Processors are identical and have the same speed. Tasks can be preempted and they can migrate between processors. We propose an algorithm with a utilization bound of 66% and with few preemptions. It can trade a higher utilization bound for more preemption and in doing so it has a utilization bound of 100%.