943 resultados para Multiplicative noise


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There has been a recent burst of activity in the atmosphere/ocean sciences community in utilizing stable linear Langevin stochastic models for the unresolved degree of freedom in stochastic climate prediction. Here several idealized models for stochastic climate modeling are introduced and analyzed through unambiguous mathematical theory. This analysis demonstrates the potential need for more sophisticated models beyond stable linear Langevin equations. The new phenomena include the emergence of both unstable linear Langevin stochastic models for the climate mean and the need to incorporate both suitable nonlinear effects and multiplicative noise in stochastic models under appropriate circumstances. The strategy for stochastic climate modeling that emerges from this analysis is illustrated on an idealized example involving truncated barotropic flow on a beta-plane with topography and a mean flow. In this example, the effect of the original 57 degrees of freedom is well represented by a theoretically predicted stochastic model with only 3 degrees of freedom.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a stochastic agent-based model for the distribution of personal incomes in a developing economy. We start with the assumption that incomes are determined both by individual labour and by stochastic effects of trading and investment. The income from personal effort alone is distributed about a mean, while the income from trade, which may be positive or negative, is proportional to the trader's income. These assumptions lead to a Langevin model with multiplicative noise, from which we derive a Fokker-Planck (FP) equation for the income probability density function (IPDF) and its variation in time. We find that high earners have a power law income distribution while the low-income groups have a Levy IPDF. Comparing our analysis with the Indian survey data (obtained from the world bank website: http://go.worldbank.org/SWGZB45DN0) taken over many years we obtain a near-perfect data collapse onto our model's equilibrium IPDF. Using survey data to relate the IPDF to actual food consumption we define a poverty index (Sen A. K., Econometrica., 44 (1976) 219; Kakwani N. C., Econometrica, 48 (1980) 437), which is consistent with traditional indices, but independent of an arbitrarily chosen "poverty line" and therefore less susceptible to manipulation. Copyright © EPLA, 2010.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the statistics of optical data transmission in a noisy nonlinear fiber channel with a weak dispersion management and zero average dispersion. Applying analytical expressions for the output probability density functions both for a nonlinear channel and for a linear channel with additive and multiplicative noise we calculate in a closed form a lower bound estimate on the Shannon capacity for an arbitrary signal-to-noise ratio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a new framework has been applied to the design of controllers which encompasses nonlinearity, hysteresis and arbitrary density functions of forward models and inverse controllers. Using mixture density networks, the probabilistic models of both the forward and inverse dynamics are estimated such that they are dependent on the state and the control input. The optimal control strategy is then derived which minimizes uncertainty of the closed loop system. In the absence of reliable plant models, the proposed control algorithm incorporates uncertainties in model parameters, observations, and latent processes. The local stability of the closed loop system has been established. The efficacy of the control algorithm is demonstrated on two nonlinear stochastic control examples with additive and multiplicative noise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation is devoted to the equations of motion governing the evolution of a fluid or gas at the macroscopic scale. The classical model is a PDE description known as the Navier-Stokes equations. The behavior of solutions is notoriously complex, leading many in the scientific community to describe fluid mechanics using a statistical language. In the physics literature, this is often done in an ad-hoc manner with limited precision about the sense in which the randomness enters the evolution equation. The stochastic PDE community has begun proposing precise models, where a random perturbation appears explicitly in the evolution equation. Although this has been an active area of study in recent years, the existing literature is almost entirely devoted to incompressible fluids. The purpose of this thesis is to take a step forward in addressing this statistical perspective in the setting of compressible fluids. In particular, we study the well posedness for the corresponding system of Stochastic Navier Stokes equations, satisfied by the density, velocity, and temperature. The evolution of the momentum involves a random forcing which is Brownian in time and colored in space. We allow for multiplicative noise, meaning that spatial correlations may depend locally on the fluid variables. Our main result is a proof of global existence of weak martingale solutions to the Cauchy problem set within a bounded domain, emanating from large initial datum. The proof involves a mix of deterministic and stochastic analysis tools. Fundamentally, the approach is based on weak compactness techniques from the deterministic theory combined with martingale methods. Four layers of approximate stochastic PDE's are built and analyzed. A careful study of the probability laws of our approximating sequences is required. We prove appropriate tightness results and appeal to a recent generalization of the Skorohod theorem. This ultimately allows us to deduce analogues of the weak compactness tools of Lions and Feireisl, appropriately interpreted in the stochastic setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starting with a micropolar formulation, known to account for nonlocal microstructural effects at the continuum level, a generalized Langevin equation (GLE) for a particle, describing the predominant motion of a localized region through a single displacement degree of freedom, is derived. The GLE features a memory-dependent multiplicative or internal noise, which appears upon recognizing that the microrotation variables possess randomness owing to an uncertainty principle. Unlike its classical version, the present GLE qualitatively reproduces the experimentally measured fluctuations in the steady-state mean square displacement of scattering centers in a polyvinyl alcohol slab. The origin of the fluctuations is traced to nonlocal spatial interactions within the continuum, a phenomenon that is ubiquitous across a broad class of response regimes in solids and fluids. This renders the proposed GLE a potentially useful model in such cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noises under two criteria. The first one is an unconstrained mean-variance trade-off performance criterion along the time, and the second one is a minimum variance criterion along the time with constraints on the expected output. We present explicit conditions for the existence of an optimal control strategy for the problems, generalizing previous results in the literature. We conclude the paper by presenting a numerical example of a multi-period portfolio selection problem with regime switching in which it is desired to minimize the sum of the variances of the portfolio along the time under the restriction of keeping the expected value of the portfolio greater than some minimum values specified by the investor. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the nature of plasticity in the adult visual system, perceptual learning was measured in a peripheral orientation discrimination task with systematically varying amounts of external (environmental) noise. The signal contrasts required to achieve threshold were reduced by a factor or two or more after training at all levels of external noise. The strong quantitative regularities revealed by this novel paradigm ruled out changes in multiplicative internal noise, changes in transducer nonlinearites, and simple attentional tradeoffs. Instead, the regularities specify the mechanisms of perceptual learning at the behavioral level as a combination of external noise exclusion and stimulus enhancement via additive internal noise reduction. The findings also constrain the neural architecture of perceptual learning. Plasticity in the weights between basic visual channels and decision is sufficient to account for perceptual learning without requiring the retuning of visual mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instead of the costly encryption algorithms traditionally employed in auction schemes, efficient Goldwasser-Micali encryption is used to design a new sealed-bid auction. Multiplicative homomorphism instead of the traditional additive homomorphism is exploited to achieve security and high efficiency in the auction. The new scheme is the currently known most efficient non-interactive sealed-bid auction with bid privacy.