614 resultados para Multiplexing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe high-efficiency, high-dispersion reflection gratings fabricated in bulk fused Silica illuminated by incident lights in the C + L bands as (de)multiplexers for dense wavelength division multiplexing (DWDM) application. Based on the phenomenon of total internal reflection, gratings with optimized profile parameters exhibit diffraction efficiencies of more than 90% under TM- and TE-polarized incident lights for 101-nm spectral bandwidths (1520-1620 nm) and can reach an efficiency of greater than 97% for both polarizations at a wavelength of 1550 nm. Without loss of metal absorption, without coating of dielectric film layers, and independent of tooth shape, this new kind of grating should be of great interest for DWDM application. (C) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new low-cost solution using orthogonal transmission of non-return-to-zero and carrierless-amplitude-and-phase format data to realize a coarse OFDM transmission system. Using low bandwidth electronics and optoelectronic components, the system is demonstrated at 37.5Gb/s. © 2011 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usage of subcarrier multiplexing (SCM) techniques to allow link transmission in excess of the specified fiber bandwidth is described. A series of 200-Mbit/s channels with carrier frequencies of up to more than twenty times the 3-dB fiber bandwidth have been successfully used, the maximum being limited by the available electronics. To assess the transmission of the fiber, digitally modulated channels are placed on high frequency carrier signals and then used to modulate a vertical-cavity surface-emitting lasers (VCSEL).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific fibre modes are deliberately excited in a few-mode and multimode fibre using holography. The same system is also used to demonstrate holography's ability to detect and route individual fibre modes. © 2011 Optical Society of America.