781 resultados para Multiple Criteria Decision Making (MCDM)
Resumo:
Three novel solar thermal collector concepts derived from the Linear Fresnel Reflector (LFR) are developed and evaluated through a multi-criteria decision-making methodology, comprising the following techniques: Quality Function Deployment (QFD), the Analytical Hierarchy Process (AHP) and the Pugh selection matrix. Criteria are specified by technical and customer requirements gathered from Gujarat, India. The concepts are compared to a standard LFR for reference, and as a result, a novel 'Elevation Linear Fresnel Reflector' (ELFR) concept using elevating mirrors is selected. A detailed version of this concept is proposed and compared against two standard LFR configurations, one using constant and the other using variable horizontal mirror spacing. Annual performance is analysed for a typical meteorological year. Financial assessment is made through the construction of a prototype. The novel LFR has an annual optical efficiency of 49% and increases exergy by 13-23%. Operational hours above a target temperature of 300 C are increased by 9-24%. A 17% reduction in land usage is also achievable. However, the ELFR suffers from additional complexity and a 16-28% increase in capital cost. It is concluded that this novel design is particularly promising for industrial applications and locations with restricted land availability or high land costs. The decision analysis methodology adopted is considered to have a wider potential for applications in the fields of renewable energy and sustainable design. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Purpose – The purpose of this research is to develop a holistic approach to maximize the customer service level while minimizing the logistics cost by using an integrated multiple criteria decision making (MCDM) method for the contemporary transshipment problem. Unlike the prevalent optimization techniques, this paper proposes an integrated approach which considers both quantitative and qualitative factors in order to maximize the benefits of service deliverers and customers under uncertain environments. Design/methodology/approach – This paper proposes a fuzzy-based integer linear programming model, based on the existing literature and validated with an example case. The model integrates the developed fuzzy modification of the analytic hierarchy process (FAHP), and solves the multi-criteria transshipment problem. Findings – This paper provides several novel insights about how to transform a company from a cost-based model to a service-dominated model by using an integrated MCDM method. It suggests that the contemporary customer-driven supply chain remains and increases its competitiveness from two aspects: optimizing the cost and providing the best service simultaneously. Research limitations/implications – This research used one illustrative industry case to exemplify the developed method. Considering the generalization of the research findings and the complexity of the transshipment service network, more cases across multiple industries are necessary to further enhance the validity of the research output. Practical implications – The paper includes implications for the evaluation and selection of transshipment service suppliers, the construction of optimal transshipment network as well as managing the network. Originality/value – The major advantages of this generic approach are that both quantitative and qualitative factors under fuzzy environment are considered simultaneously and also the viewpoints of service deliverers and customers are focused. Therefore, it is believed that it is useful and applicable for the transshipment service network design.
Resumo:
The improvement in living standards and the development of telecommunications have led to a large increase in the number of Internet users in China. It has been reported by China National Network Information Center that the number of Internet users in China has reached 33.7 million in 2001, ranting the country third in the world. This figure also shows that more and more Chinese residents have accepted the Internet and use it to obtain information and compete their travel planning. Milne and Ateljevic stated that the integration of computing and telecommunications would create a global information network based mostly on the Internet. The Internet, especially the World Wide Web, has had a great impact on the hospitality and tourism industry in recent years. The WWW plays an important role in mediating between customers and hotel companies as a place to acquire information acquisition and transact business.
Resumo:
Since policy-makers usually pursue several conflicting objectives, policy-making can be understood as a multicriteria decision problem. Following the methodological proposal by André and Cardenete (2005) André, F. J. and Cardenete, M. A. 2005. Multicriteria Policy Making. Defining Efficient Policies in a General Equilibrium Model, Seville: Centro de Estudios Andaluces. Working Paper No. E2005/04, multi-objective programming is used in connection with a computable general equilibrium model to represent optimal policy-making and to obtain so-called efficient policies in an application to a regional economy (Andalusia, Spain). This approach is applied to the design of subsidy policies under two different scenarios. In the first scenario, it is assumed that the government is concerned just about two objectives: ensuring the profitability of a key strategic sector and increasing overall output. Finally, the scope of the exercise is enlarged by solving a problem with seven policy objectives, including both general and sectorial objectives. It is concluded that the observed policy could have been Pareto-improved in several directions.
Resumo:
Decisions taken in modern organizations are often multi-dimensional, involving multiple decision makers and several criteria measured on different scales. Multiple Criteria Decision Making (MCDM) methods are designed to analyze and to give recommendations in this kind of situations. Among the numerous MCDM methods, two large families of methods are the multi-attribute utility theory based methods and the outranking methods. Traditionally both method families require exact values for technical parameters and criteria measurements, as well as for preferences expressed as weights. Often it is hard, if not impossible, to obtain exact values. Stochastic Multicriteria Acceptability Analysis (SMAA) is a family of methods designed to help in this type of situations where exact values are not available. Different variants of SMAA allow handling all types of MCDM problems. They support defining the model through uncertain, imprecise, or completely missing values. The methods are based on simulation that is applied to obtain descriptive indices characterizing the problem. In this thesis we present new advances in the SMAA methodology. We present and analyze algorithms for the SMAA-2 method and its extension to handle ordinal preferences. We then present an application of SMAA-2 to an area where MCDM models have not been applied before: planning elevator groups for high-rise buildings. Following this, we introduce two new methods to the family: SMAA-TRI that extends ELECTRE TRI for sorting problems with uncertain parameter values, and SMAA-III that extends ELECTRE III in a similar way. An efficient software implementing these two methods has been developed in conjunction with this work, and is briefly presented in this thesis. The thesis is closed with a comprehensive survey of SMAA methodology including a definition of a unified framework.
Resumo:
When users face a certain problem needing a product, service, or action to solve it, selecting the best alternative among them can be a dicult task due to the uncertainty of their quality. This is especially the case in the domains where users do not have an expertise, like for example in Software Engineering. Multiple criteria decision making (MCDM) methods are methods that help making better decisions when facing the complex problem of selecting the best solution among a group of alternatives that can be compared according to different conflicting criteria. In MCDM problems, alternatives represent concrete products, services or actions that will help in achieving a goal, while criteria represent the characteristics of these alternatives that are important for making a decision.
Resumo:
The objective of this study was to propose a multi-criteria optimization and decision-making technique to solve food engineering problems. This technique was demostrated using experimental data obtained on osmotic dehydratation of carrot cubes in a sodium chloride solution. The Aggregating Functions Approach, the Adaptive Random Search Algorithm, and the Penalty Functions Approach were used in this study to compute the initial set of non-dominated or Pareto-optimal solutions. Multiple non-linear regression analysis was performed on a set of experimental data in order to obtain particular multi-objective functions (responses), namely water loss, solute gain, rehydration ratio, three different colour criteria of rehydrated product, and sensory evaluation (organoleptic quality). Two multi-criteria decision-making approaches, the Analytic Hierarchy Process (AHP) and the Tabular Method (TM), were used simultaneously to choose the best alternative among the set of non-dominated solutions. The multi-criteria optimization and decision-making technique proposed in this study can facilitate the assessment of criteria weights, giving rise to a fairer, more consistent, and adequate final compromised solution or food process. This technique can be useful to food scientists in research and education, as well as to engineers involved in the improvement of a variety of food engineering processes.
Resumo:
The integration of wind power in eletricity generation brings new challenges to unit commitment due to the random nature of wind speed. For this particular optimisation problem, wind uncertainty has been handled in practice by means of conservative stochastic scenario-based optimisation models, or through additional operating reserve settings. However, generation companies may have different attitudes towards operating costs, load curtailment, or waste of wind energy, when considering the risk caused by wind power variability. Therefore, alternative and possibly more adequate approaches should be explored. This work is divided in two main parts. Firstly we survey the main formulations presented in the literature for the integration of wind power in the unit commitment problem (UCP) and present an alternative model for the wind-thermal unit commitment. We make use of the utility theory concepts to develop a multi-criteria stochastic model. The objectives considered are the minimisation of costs, load curtailment and waste of wind energy. Those are represented by individual utility functions and aggregated in a single additive utility function. This last function is adequately linearised leading to a mixed-integer linear program (MILP) model that can be tackled by general-purpose solvers in order to find the most preferred solution. In the second part we discuss the integration of pumped-storage hydro (PSH) units in the UCP with large wind penetration. Those units can provide extra flexibility by using wind energy to pump and store water in the form of potential energy that can be generated after during peak load periods. PSH units are added to the first model, yielding a MILP model with wind-hydro-thermal coordination. Results showed that the proposed methodology is able to reflect the risk profiles of decision makers for both models. By including PSH units, the results are significantly improved.
Resumo:
Integrated supplier selection and order allocation is an important decision for both designing and operating supply chains. This decision is often influenced by the concerned stakeholders, suppliers, plant operators and customers in different tiers. As firms continue to seek competitive advantage through supply chain design and operations they aim to create optimized supply chains. This calls for on one hand consideration of multiple conflicting criteria and on the other hand consideration of uncertainties of demand and supply. Although there are studies on supplier selection using advanced mathematical models to cover a stochastic approach, multiple criteria decision making techniques and multiple stakeholder requirements separately, according to authors' knowledge there is no work that integrates these three aspects in a common framework. This paper proposes an integrated method for dealing with such problems using a combined Analytic Hierarchy Process-Quality Function Deployment (AHP-QFD) and chance constrained optimization algorithm approach that selects appropriate suppliers and allocates orders optimally between them. The effectiveness of the proposed decision support system has been demonstrated through application and validation in the bioenergy industry.
Resumo:
Autor proof
Resumo:
LiDAR is an advanced remote sensing technology with many applications, including forest inventory. The most common type is ALS (airborne laser scanning). The method is successfully utilized in many developed markets, where it is replacing traditional forest inventory methods. However, it is innovative for Russian market, where traditional field inventory dominates. ArboLiDAR is a forest inventory solution that engages LiDAR, color infrared imagery, GPS ground control plots and field sample plots, developed by Arbonaut Ltd. This study is an industrial market research for LiDAR technology in Russia focused on customer needs. Russian forestry market is very attractive, because of large growing stock volumes. It underwent drastic changes in 2006, but it is still in transitional stage. There are several types of forest inventory, both with public and private funding. Private forestry enterprises basically need forest inventory in two cases – while making coupe demarcation before timber harvesting and as a part of forest management planning, that is supposed to be done every ten years on the whole leased territory. The study covered 14 companies in total that include private forestry companies with timber harvesting activities, private forest inventory providers, state subordinate companies and forestry software developer. The research strategy is multiple case studies with semi-structured interviews as the main data collection technique. The study focuses on North-West Russia, as it is the most developed Russian region in forestry. The research applies the Voice of the Customer (VOC) concept to elicit customer needs of Russian forestry actors and discovers how these needs are met. It studies forest inventory methods currently applied in Russia and proposes the model of method comparison, based on Multi-criteria decision making (MCDM) approach, mainly on Analytical Hierarchy Process (AHP). Required product attributes are classified in accordance with Kano model. The answer about suitability of LiDAR technology is ambiguous, since many details should be taken into account.
Resumo:
Agro-areas of Arroyos Menores (La Colacha) west and south of Rand south of R?o Cuarto (Prov. of Cordoba, Argentina) basins are very fertile but have high soil loses. Extreme rain events, inundations and other severe erosions forming gullies demand urgently actions in this area to avoid soil degradation and erosion supporting good levels of agro production. The authors first improved hydrologic data on La Colacha, evaluated the systems of soil uses and actions that could be recommended considering the relevant aspects of the study area and applied decision support systems (DSS) with mathematic tools for planning of defences and uses of soils in these areas. These were conducted here using multi-criteria models, in multi-criteria decision making (MCDM); first of discrete MCDM to chose among global types of use of soils, and then of continuous MCDM to evaluate and optimize combined actions, including repartition of soil use and the necessary levels of works for soil conservation and for hydraulic management to conserve against erosion these basins. Relatively global solutions for La Colacha area have been defined and were optimised by Linear Programming in Goal Programming forms that are presented as Weighted or Lexicographic Goal Programming and as Compromise Programming. The decision methods used are described, indicating algorithms used, and examples for some representative scenarios on La Colacha area are given.
Resumo:
La apertura de los mercados internacionales de capital como consecuencia del proceso de globalización ha motivado un aumento significativo de la labor investigadora en el campo de la economía y, concretamente, en la teoría de la inversión. Los trabajos en este área tuvieron como punto de partida el artículo publicado por Harry Markowitz en 1952 en el Journal of Finance bajo el título “Portfolio Selection”. En él se pretende hacer una modelización del proceso inversionista principalmente a través de dos criterios: riesgo y retorno. Markowitz no da indicaciones en cuanto a cómo elegir la composición de una cartera optimizando simultáneamente riesgo y retorno. En su lugar, fija una de las dos variables (según la aversión al riesgo del inversor y su preferencia por las ganancias) y optimiza la otra. Sin embargo, este análisis resulta ser bastante simplista si tenemos en cuenta que los inversores, como cualquier ser humano, son decisores multicriterio: no sólo maximizarán el beneficio para un riesgo dado, sino que intentarán también minimizar el riesgo, diversificar el tipo de acciones que poseen para inmunizarse frente a crisis financieras, emplear nuevos criterios de inversión que incorporen la sostenibilidad medioambiental y el impacto que la actividad productiva tiene en la sociedad, destinar un mayor porcentaje del presupuesto a compañías poco endeudadas, que alcancen un buen rating o unos buenos índices de responsabilidad social corporativa, etc. La inclusión de estas nuevas variables en el modelo tradicional es ahora posible gracias a la teoría de la decisión multicriterio (MCDM: Multiple Criteria Decision Making). Desde los años setenta se viene desarrollando y aplicando este nuevo paradigma en áreas tan dispares como la planificación de redes de telecomunicación, la optimización de listas de espera en hospitales o la planificación logística de las grandes distribuidoras y compañías de mensajería. En el presente trabajo se pretende aplicar el paradigma MCDM a la construcción de una cartera de acciones siguiendo criterios tanto puramente financieros como de sostenibilidad medioambiental y responsabilidad social corporativa. Para ello, en esta primera parte se estudiará la teoría clásica de selección de carteras de Markowitz, explicando los parámetros que permiten caracterizar un instrumento financiero individual (retorno, riesgo, covarianza) y una cartera de instrumentos (diversificación, frontera eficiente). En la segunda parte se analizará en profundidad el concepto de desarrollo sostenible, tan extendido en la actualidad, y su transposición al plano corporativo y de gestión de carteras. Se realizará una revisión histórica del término y su encaje en el esquema de decisión de una compañía privada, así como un estudio de las herramientas para medir el cumplimiento de ciertos principios de sostenibilidad por parte de las compañías y hacer, de esta forma, cuantificables dichos conceptos con vistas a su incorporación al esquema decisional del inversor. Con posterioridad, en la tercera parte se estudiará la programación por metas como técnica de decisión multicriterio para aplicar al problema de la composición de carteras. El potencial de esta metodología radica en que permite hacer resoluble un problema, en principio, sin solución. Y es que, como no se pueden optimizar todos y cada uno de los criterios simultáneamente, la programación por metas minimizará las desviaciones respecto a determinados niveles de aspiración para ofrecer una solución lo más cercana posible a la ideal. Finalmente, se construirá un caso de estudio a partir de datos reales tanto financieros como de sostenibilidad para, posteriormente, resolver el modelo matemático construido empleando LINGO. A través de esta herramienta software se podrá simular el proceso de optimización y obtener una cartera-solución que refleje las preferencias del agente decisor.
Resumo:
Las listas de espera son un problema para la mayor parte de los países que cuentan con un Sistema Nacional de Salud. El presente trabajo propone analizar el problema de las listas de espera desde una perspectiva de Decisión Multicriterio. Tras un análisis de las diferentes metodologías existentes, hemos elaborado un modelo de decisión basado en el método AHP (Analytic Hierarchy Process) para la gestión de listas de espera y lo hemos aplicado a un Hospital de la Comunidad de Madrid. La decisión multicriterio MCDM (Multiple Criteria Decision Making) es la teoría que estudia y analiza los problemas de decisión que involucran diferentes criterios. La MCDM enmarca con precisión problemas reales de toma de decisiones, planteados usualmente haciendo uso de varios criterios en conflicto; en los cuales, no será posible obtener en general una solución que asigne a todos los criterios su mejor valor sino que el decisor, aplicando distintas técnicas, deberá decidir la mejor solución a escoger del conjunto de soluciones factibles. El fundamento del AHP radica en descomponer problemas complejos en otros más sencillos y agregar las soluciones de los mismos. Según la propuesta de Saaty, el primer paso para la aplicación de este método es estructurar jerárquicamente el problema en niveles con distintos nodos interconectados. El primer nivel de la jerarquía corresponde al propósito del problema, el nivel/niveles intermedios a los criterios/subcriterios en base a los cuales se forma la decisión y el último corresponde a las alternativas o soluciones factibles del problema. La aplicación del método AHP requiere: -Realizar comparaciones por pares entre los entes de cada nivel jerárquico, en base a la importancia que presentan para el nodo del nivel superior de la jerarquía al que están ligados. Los resultados de estas comparaciones se recogen en forma de matrices de comparación por pares. -Obtener los vectores de prioridad correspondientes a cada una de las matrices de comparación por pares. -Calcular la contribución de cada alternativa al propósito del problema, mediante una agregación multiplicativa entre los niveles jerárquicos y en función de estos valores, ordenar las alternativas y seleccionar lo más conveniente como solución del problema. Como último paso en la metodología AHP debemos señalar que, cualquiera que sea el método empleado para sintetizar la información de dichas matrices para determinar los vectores de prioridad de los entes que se comparan, es posible realizar un análisis de sensibilidad del resultado alcanzado, visualizando y analizando otras posibles soluciones a obtener haciendo cambios en los juicios de valor emitidos por la unidad decisora al construir dichas matrices. El software Expert-Choice permite realizar el análisis de sensibilidad de 5 formas diferentes. En estos análisis se realizan variaciones en el valor de un peso o prioridad y se observa numérica y gráficamente como este cambio afecta a la puntuación de las alternativas.