946 resultados para Multiperiod mixed-integer convex model
Resumo:
In this paper, a mixed-integer nonlinear approach is proposed to support decision-making for a hydro power producer, considering a head-dependent hydro chain. The aim is to maximize the profit of the hydro power producer from selling energy into the electric market. As a new contribution to earlier studies, a risk aversion criterion is taken into account, as well as head-dependency. The volatility of the expected profit is limited through the conditional value-at-risk (CVaR). The proposed approach has been applied successfully to solve a case study based on one of the main Portuguese cascaded hydro systems.
Resumo:
This paper is on the problem of short-term hydro, scheduling, particularly concerning head-dependent cascaded hydro systems. We propose a novel mixed-integer quadratic programming approach, considering not only head-dependency, but also discontinuous operating regions and discharge ramping constraints. Thus, an enhanced short-term hydro scheduling is provided due to the more realistic modeling presented in this paper. Numerical results from two case studies, based on Portuguese cascaded hydro systems, illustrate the proficiency of the proposed approach.
Resumo:
In this paper, a novel mixed-integer nonlinear approach is proposed to solve the short-term hydro scheduling problem in the day-ahead electricity market, considering not only head-dependency, but also start/stop of units, discontinuous operating regions and discharge ramping constraints. Results from a case study based on one of the main Portuguese cascaded hydro energy systems are presented, showing that the proposedmixed-integer nonlinear approach is proficient. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.
Resumo:
Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.
Resumo:
The minimum interval graph completion problem consists of, given a graph G = ( V, E ), finding a supergraph H = ( V, E ∪ F ) that is an interval graph, while adding the least number of edges |F| . We present an integer programming formulation for solving the minimum interval graph completion problem recurring to a characteri- zation of interval graphs that produces a linear ordering of the maximal cliques of the solution graph.
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2012
Resumo:
La programmation linéaire en nombres entiers est une approche robuste qui permet de résoudre rapidement de grandes instances de problèmes d'optimisation discrète. Toutefois, les problèmes gagnent constamment en complexité et imposent parfois de fortes limites sur le temps de calcul. Il devient alors nécessaire de développer des méthodes spécialisées afin de résoudre approximativement ces problèmes, tout en calculant des bornes sur leurs valeurs optimales afin de prouver la qualité des solutions obtenues. Nous proposons d'explorer une approche de reformulation en nombres entiers guidée par la relaxation lagrangienne. Après l'identification d'une forte relaxation lagrangienne, un processus systématique permet d'obtenir une seconde formulation en nombres entiers. Cette reformulation, plus compacte que celle de Dantzig et Wolfe, comporte exactement les mêmes solutions entières que la formulation initiale, mais en améliore la borne linéaire: elle devient égale à la borne lagrangienne. L'approche de reformulation permet d'unifier et de généraliser des formulations et des méthodes de borne connues. De plus, elle offre une manière simple d'obtenir des reformulations de moins grandes tailles en contrepartie de bornes plus faibles. Ces reformulations demeurent de grandes tailles. C'est pourquoi nous décrivons aussi des méthodes spécialisées pour en résoudre les relaxations linéaires. Finalement, nous appliquons l'approche de reformulation à deux problèmes de localisation. Cela nous mène à de nouvelles formulations pour ces problèmes; certaines sont de très grandes tailles, mais nos méthodes de résolution spécialisées les rendent pratiques.
Resumo:
The intraseasonal variability (ISV) of the Indian summer monsoon is dominated by a 30–50 day oscillation between “active” and “break” events of enhanced and reduced rainfall over the subcontinent, respectively. These organized convective events form in the equatorial Indian Ocean and propagate north to India. Atmosphere–ocean coupled processes are thought to play a key role the intensity and propagation of these events. A high-resolution, coupled atmosphere–mixed-layer-oceanmodel is assembled: HadKPP. HadKPP comprises the Hadley Centre Atmospheric Model (HadAM3) and the K Profile Parameterization (KPP) mixed-layer ocean model. Following studies that upper-ocean vertical resolution and sub-diurnal coupling frequencies improve the simulation of ISV in SSTs, KPP is run at 1 m vertical resolution near the surface; the atmosphere and ocean are coupled every three hours. HadKPP accurately simulates the 30–50 day ISV in rainfall and SSTs over India and the Bay of Bengal, respectively, but suffers from low ISV on the equator. This is due to the HadAM3 convection scheme producing limited ISV in surface fluxes. HadKPP demonstrates little of the observed northward propagation of intraseasonal events, producing instead a standing oscillation. The lack of equatorial ISV in convection in HadAM3 constrains the ability of KPP to produce equatorial SST anomalies, which further weakens the ISV of convection. It is concluded that while atmosphere–ocean interactions are undoubtedly essential to an accurate simulation of ISV, they are not a panacea for model deficiencies. In regions where the atmospheric forcing is adequate, such as the Bay of Bengal, KPP produces SST anomalies that are comparable to the Tropical Rainfall Measuring Mission Microwave Imager (TMI) SST analyses in both their magnitude and their timing with respect to rainfall anomalies over India. HadKPP also displays a much-improved phase relationship between rainfall and SSTs over a HadAM3 ensemble forced by observed SSTs, when both are compared to observations. Coupling to mixed-layer models such as KPP has the potential to improve operational predictions of ISV, particularly when the persistence time of SST anomalies is shorter than the forecast lead time.
Resumo:
This paper presents a mixed-integer linear programming approach to solving the problem of optimal type, size and allocation of distributed generators (DGs) in radial distribution systems. In the proposed formulation, (a) the steady-state operation of the radial distribution system, considering different load levels, is modeled through linear expressions; (b) different types of DGs are represented by their capability curves; (c) the short-circuit current capacity of the circuits is modeled through linear expressions; and (d) different topologies of the radial distribution system are considered. The objective function minimizes the annualized investment and operation costs. The use of a mixed-integer linear formulation guarantees convergence to optimality using existing optimization software. The results of one test system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique.© 2012 Elsevier B.V. All rights reserved.
Resumo:
The behavior of the decay of velocity in a semi-dissipative one-dimensional Fermi accelerator model is considered. Two different kinds of dissipative forces were considered: (i) F-v and; (ii) F-v2. We prove the decay of velocity is linear for (i) and exponential for (ii). During the decay, the particles move along specific corridors which are constructed by the borders of the stable manifolds of saddle points. These corridors organize themselves in a very complicated way in the phase space leading the basin of attraction of the sinks to be seemingly of fractal type. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.
Resumo:
This paper deals with “The Enchanted Journey,” which is a daily event tour booked by Bollywood-film fans. During the tour, the participants visit original sites of famous Bollywood films at various locations in Switzerland; moreover, the tour includes stops for lunch and shopping. Each day, up to five buses operate the tour. For operational reasons, however, two or more buses cannot stay at the same location simultaneously. Further operative constraints include time windows for all activities and precedence constraints between some activities. The planning problem is how to compute a feasible schedule for each bus. We implement a two-step hierarchical approach. In the first step, we minimize the total waiting time; in the second step, we minimize the total travel time of all buses. We present a basic formulation of this problem as a mixed-integer linear program. We enhance this basic formulation by symmetry-breaking constraints, which reduces the search space without loss of generality. We report on computational results obtained with the Gurobi Solver. Our numerical results show that all relevant problem instances can be solved using the basic formulation within reasonable CPU time, and that the symmetry-breaking constraints reduce that CPU time considerably.