969 resultados para Multicorer with television


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon into bacterial biomass is indicated by carbon isotope values of specific fatty acids as low as -103 per mill. Specific fatty acids released from bacterial membranes include C 16:1 omega 5c , C 17:1 omega 6c , and cyC 17:0 omega 5,6 , all of which have been fully characterized by mass spectrometry. These unusual fatty acids continuously display the lowest d13 C values in all sediment horizons and two of them are detected in high abundance (i.e., C 16:1 omega 5c and cyC 17:0 omega 5,6 ). Combined with microscopic examination by fluorescence in situ hybridization specifically targeting sulfate-reducing bacteria (SRB) of the Desulfosarcina/Desulfococcus group, which are present in the aggregates of AOM consortia in extremely high numbers, these specific fatty acids appear to provide a phenotypic fingerprint indicative for SRB of this group. Correlating depth profiles of specific fatty acid content and aggregate number in combination with pore water sulfate data provide further evidence of this finding. Using mass balance calculations we present a cell-specific fatty acid pattern most likely displaying a very close resemblance to the still uncultured Desulfosarcina/Desulfococcus species involved in AOM.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dvurechenskii mud volcano (DMV), located in permanently anoxic waters at 2060 m depth (Sorokin Trough, Black Sea), was visited during the M72/2 cruise with the RV Meteor to investigate the methane and sulfide release from mud volcanoes into the Black Sea hydrosphere. We studied benthic fluxes of methane and sulfide, and the factors controlling transport, consumption and production of both compounds within the sediment. The pie shaped mud volcano showed temperature anomalies as well as solute and gas fluxes indicating high fluid flow at a small elevation north of the geographical center. The anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was excluded from this zone due to fluid-flow induced sulfate limitation and a fresh mud flow and consequently methane escaped into the water column with a rate of 0.46 mol/m**2/d. In the outer center of the mud volcano fluid flow and total methane flux were decreased, correlating with an increase in sulfate penetration into the sediment, and with higher SR and AOM rates. Here between 50-70% of the methane flux (0.07-0.1 mol/m**2/d) was consumed within the upper 10 cm of the sediment. Also at the edge of the mud volcano fluid flow and rates of methane and sulfate turnover were substantial. The overall amount of dissolved methane released from the mud volcano into the water column was significant with a discharge of 1.4x10**7 mol/yr. The DMV maintains also high areal rates of methane-fueled sulfide production of on average 0.05 mol/m**2/d. However, we concluded that sulfide and methane emission into the hydrosphere from deep water mud volcanoes does not significantly contribute to the sulfide and methane inventory of the Black Sea.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the MARGASCH cruise M52/1 in 2001 with RV Meteor we sampled surface sediments from three stations in the crater of the Dvurechenskii mud volcano (DMV, located in the Sorokin Trough of the Black Sea) and one reference station situated 15 km to the northeast of the DMV. We analysed the pore water for sulphide, methane, alkalinity, sulphate, and chloride concentrations and determined the concentrations of particulate organic carbon, carbonate and sulphur in surface sediments. Rates of anaerobic oxidation of methane (AOM) were determined using a radiotracer (14CH4) incubation method. Numerical transport-reaction models were applied to derive the velocity of upward fluid flow through the quiescently dewatering DMV, to calculate rates of AOM in surface sediments, and to determine methane fluxes into the overlying water column. According to the model, AOM consumes 79% of the average methane flux from depth (8.9 x 10**+ 6 mol a**-1), such that the resulting dissolved methane emission from the volcano into the overlying bottom water can be determined as 1.9 x 10**+ 6 mol a**-1. If it is assumed that all submarine mud volcanoes (SMVs) in the Black Sea are at an activity level like the DMV, the resulting seepage represents less than 0.1% of the total methane flux into this anoxic marginal sea. The new data from the DMV and previously published studies indicate that an average SMV emits about 2.0 x 10**+ 6 mol a**-1 into the ocean via quiescent dewatering. The global flux of dissolved methane from SMVs into the ocean is estimated to fall into the order of 10**+10 mol a**-1. Additional methane fluxes arise during periods of active mud expulsion and gas bubbling occurring episodically at the DMV and other SMVs.