995 resultados para Multiagent system
Resumo:
In the last years there has been a considerable increase in the number of people in need of intensive care, especially among the elderly, a phenomenon that is related to population ageing (Brown 2003). However, this is not exclusive of the elderly, as diseases as obesity, diabetes, and blood pressure have been increasing among young adults (Ford and Capewell 2007). As a new fact, it has to be dealt with by the healthcare sector, and particularly by the public one. Thus, the importance of finding new and cost effective ways for healthcare delivery are of particular importance, especially when the patients are not to be detached from their environments (WHO 2004). Following this line of thinking, a VirtualECare Multiagent System is presented in section 2, being our efforts centered on its Group Decision modules (Costa, Neves et al. 2007) (Camarinha-Matos and Afsarmanesh 2001).On the other hand, there has been a growing interest in combining the technological advances in the information society - computing, telecommunications and knowledge – in order to create new methodologies for problem solving, namely those that convey on Group Decision Support Systems (GDSS), based on agent perception. Indeed, the new economy, along with increased competition in today’s complex business environments, takes the companies to seek complementarities, in order to increase competitiveness and reduce risks. Under these scenarios, planning takes a major role in a company life cycle. However, effective planning depends on the generation and analysis of ideas (innovative or not) and, as a result, the idea generation and management processes are crucial. Our objective is to apply the GDSS referred to above to a new area. We believe that the use of GDSS in the healthcare arena will allow professionals to achieve better results in the analysis of one’s Electronically Clinical Profile (ECP). This attainment is vital, regarding the incoming to the market of new drugs and medical practices, which compete in the use of limited resources.
Resumo:
O objectivo do projecto descrito nesta dissertação é o desenvolvimento da interface entre as empresas e a plataforma Business-to-Business (B2B) de negociação automática de anúncios em construção. A plataforma, no seu todo, deve garantir que os intervalos da programação são preenchidos com um alinhamento de anúncios compatível com os interesses expressos e o perfil construído dos espectadores. A plataforma funciona como um mercado electrónico de negociação automática destinado a agências de publicidade (empresas produtoras) e empresas provedoras de conteúdos e serviços multimédia aos consumidores finais (empresas distribuidoras). As empresas, uma vez registadas na plataforma, passam a ser representadas por agentes que negoceiam automaticamente os itens submetidos com o comportamento especificado. Do ponto de vista da arquitectura, a plataforma consiste num sistema multiagente organizado em três camadas compostas por: (i) agentes de interface com as empresas; (ii) agentes de modelação das empresas; e (iii) agentes delegados, de duração efémera, exclusivamente criados para participar em negociações específicas de conteúdos multimédia. Cada empresa representada na plataforma possui, para além de um número indeterminado de delegados envolvidos em negociações específicas, dois agentes: (i) o agente de interface com a empresa, que expõe um conjunto de operações de interface ao exterior através de um serviço Web, localizado na primeira camada; e (ii) o agente que modela a empresa na plataforma, que expõe através de um serviço Web um conjunto de operações aos agentes das restantes camadas da plataforma, residente na camada intermédia. Este projecto focou-se no desenvolvimento da camada superior de interface da plataforma com as empresas e no enriquecimento da camada intermédia. A realização da camada superior incluiu a especificação da parte da ontologia da plataforma que dá suporte às operações de interface com o exterior, à sua exposição como serviços Web e à criação e controlo dos agentes de interface. Esta camada superior deve permitir às empresas carregar e descarregar toda informação relevante de e para a plataforma, através de uma interface gráfica ou de forma automática, e apresentar de forma gráfica e intuitiva os resultados alcançados, nomeadamente, através da apresentação da evolução das transacções. Em relação à camada intermédia, adicionou-se à ontologia da plataforma a representação do conhecimento de suporte às operações de interface com a camada superior, adoptaram-se taxonomias de classificação de espectadores, anúncios e programas, desenvolveu-se um algoritmo de emparelhamento entre os espectadores, programas e anúncios disponíveis e, por fim, procedeu-se ao armazenamento persistente dos resultados das negociações. Do ponto de vista da plataforma, testou-se o seu funcionamento numa única plataforma física e assegurou-se a segurança e privacidade da comunicação entre empresa e plataforma e entre agentes que representam uma mesma empresa.
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.
Resumo:
In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.
Resumo:
This paper describes a multi-agent brokerage platform for near real time advertising personalisation organised in three layers: user interface, agency and marketplace. The personalisation is based on the classification of viewer profiles and advertisements (ads). The goal is to provide viewers with a personalised advertising alignment during programme intervals. The enterprise interface agents upload new ads and negotiation profiles to producer agents and new user and negotiation profiles to distributor agents. The agency layer is composed of agents that represent ad producer and media distributor enterprises as well as the market regulator. The enterprise agents offer data upload and download operations as Web Services and register the specification of these interfaces at an UDDI registry for future discovery. The market agent supports the registration and deregistration of enterprise delegate agents at the marketplace. This paper addresses the marketplace layer, an agent-based negotiation platform per se, where delegates of the relevant advertising agencies and programme distributors negotiate to create the advertising alignment that best fits a viewer profile and the advertising campaigns available. The whole brokerage platform is being developed in JADE, a multi-agent development platform. The delegate agents download the negotiation profile and upload the negotiation results from / to the corresponding enterprise agent. In the meanwhile, they negotiate using the Iterated Contract Net protocol. All tools and technologies used are open source.
Resumo:
This paper proposes a novel business model to support media content personalisation: an agent-based business-to-business (B2B) brokerage platform for media content producer and distributor businesses. Distributors aim to provide viewers with a personalised content experience and producers wish to en-sure that their media objects are watched by as many targeted viewers as possible. In this scenario viewers and media objects (main programmes and candidate objects for insertion) have profiles and, in the case of main programme objects, are annotated with placeholders representing personalisation opportunities, i.e., locations for insertion of personalised media objects. The MultiMedia Brokerage (MMB) platform is a multiagent multilayered brokerage composed by agents that act as sellers and buyers of viewer stream timeslots and/or media objects on behalf of the registered businesses. These agents engage in negotiations to select the media objects that best match the current programme and viewer profiles.
Resumo:
This paper reports the development of a B2B platform for the personalization of the publicity transmitted during the program intervals. The platform as a whole must ensure that the intervals are filled with ads compatible with the profile, context and expressed interests of the viewers. The platform acts as an electronic marketplace for advertising agencies (content producer companies) and multimedia content providers (content distribution companies). The companies, once registered at the platform, are represented by agents who negotiate automatically the price of the interval timeslots according to the specified price range and adaptation behaviour. The candidate ads for a given viewer interval are selected through a matching mechanism between ad, viewer and the current context (program being watched) profiles. The overall architecture of the platform consists of a multiagent system organized into three layers consisting of: (i) interface agents that interact with companies; (ii) enterprise agents that model the companies, and (iii) delegate agents that negotiate a specific ad or interval. The negotiation follows a variant of the Iterated Contract Net Interaction Protocol (ICNIP) and is based on the price/s offered by the advertising agencies to occupy the viewer’s interval.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
Resumo:
Media content personalisation is a major challenge involving viewers as well as media content producer and distributor businesses. The goal is to provide viewers with media items aligned with their interests. Producers and distributors engage in item negotiations to establish the corresponding service level agreements (SLA). In order to address automated partner lookup and item SLA negotiation, this paper proposes the MultiMedia Brokerage (MMB) platform, which is a multiagent system that negotiates SLA regarding media items on behalf of media content producer and distributor businesses. The MMB platform is structured in four service layers: interface, agreement management, business modelling and market. In this context, there are: (i) brokerage SLA (bSLA), which are established between individual businesses and the platform regarding the provision of brokerage services; and (ii) item SLA (iSLA), which are established between producer and distributor businesses about the provision of media items. In particular, this paper describes the negotiation, establishment and enforcement of bSLA and iSLA, which occurs at the agreement and negotiation layers, respectively. The platform adopts a pay-per-use business model where the bSLA define the general conditions that apply to the related iSLA. To illustrate this process, we present a case study describing the negotiation of a bSLA instance and several related iSLA instances. The latter correspond to the negotiation of the Electronic Program Guide (EPG) for a specific end viewer.
Resumo:
A liberalização dos mercados de energia e a utilização intensiva de produção distribuída tem vindo a provocar uma alteração no paradigma de operação das redes de distribuição de energia elétrica. A continuidade da fiabilidade das redes de distribuição no contexto destes novos paradigmas requer alterações estruturais e funcionais. O conceito de Smart Grid vem permitir a adaptação das redes de distribuição ao novo contexto. Numa Smart Grid os pequenos e médios consumidores são chamados ao plano ativo das participações. Este processo é conseguido através da aplicação de programas de demand response e da existência de players agregadores. O uso de programas de demand response para alcançar benefícios para a rede encontra-se atualmente a ser estudado no meio científico. Porém, existe a necessidade de estudos que procurem benefícios para os pequenos e médios consumidores. O alcance dos benefícios para os pequenos e médios consumidores não é apenas vantajoso para o consumidor, como também o é para a rede elétrica de distribuição. A participação, dos pequenos e médios consumidores, em programas de demand response acontece significativamente através da redução de consumos energéticos. De modo a evitar os impactos negativos que podem provir dessas reduções, o trabalho aqui proposto faz uso de otimizações que recorrem a técnicas de aprendizagem através da utilização redes neuronais artificiais. Para poder efetuar um melhor enquadramento do trabalho com as Smart Grids, será desenvolvido um sistema multiagente capaz de simular os principais players de uma Smart Grid. O foco deste sistema multiagente será o agente responsável pela simulação do pequeno e médio consumidor. Este agente terá não só que replicar um pequeno e médio consumidor, como terá ainda que possibilitar a integração de cargas reais e virtuais. Como meio de interação com o pequeno e médio consumidor, foi desenvolvida no âmbito desta dissertação um sistema móvel. No final do trabalho obteve-se um sistema multiagente capaz de simular uma Smart Grid e a execução de programas de demand response, sSendo o agente representante do pequeno e médio consumidor capaz de tomar ações e reações de modo a poder responder autonomamente aos programas de demand response lançados na rede. O desenvolvimento do sistema permite: o estudo e análise da integração dos pequenos e médios consumidores nas Smart Grids por meio de programas de demand response; a comparação entre múltiplos algoritmos de otimização; e a integração de métodos de aprendizagem. De modo a demonstrar e viabilizar as capacidades de todo o sistema, a dissertação inclui casos de estudo para as várias vertentes que podem ser exploradas com o sistema desenvolvido.
Resumo:
Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi- Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking Hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS’ strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.
Resumo:
Contextualization is critical in every decision making process. Adequate responses to problems depend not only on the variables with direct influence on the outcomes, but also on a correct contextualization of the problem regarding the surrounding environment. Electricity markets are dynamic environments with increasing complexity, potentiated by the last decades' restructuring process. Dealing with the growing complexity and competitiveness in this sector brought the need for using decision support tools. A solid example is MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), whose players' decisions are supported by another multiagent system – ALBidS (Adaptive Learning strategic Bidding System). ALBidS uses artificial intelligence techniques to endow market players with adaptive learning capabilities that allow them to achieve the best possible results in market negotiations. This paper studies the influence of context awareness in the decision making process of agents acting in electricity markets. A context analysis mechanism is proposed, considering important characteristics of each negotiation period, so that negotiating agents can adapt their acting strategies to different contexts. The main conclusion is that context-dependant responses improve the decision making process. Suiting actions to different contexts allows adapting the behaviour of negotiating entities to different circumstances, resulting in profitable outcomes.
Resumo:
The energy sector has suffered a significant restructuring that has increased the complexity in electricity market players' interactions. The complexity that these changes brought requires the creation of decision support tools to facilitate the study and understanding of these markets. The Multiagent Simulator of Competitive Electricity Markets (MASCEM) arose in this context, providing a simulation framework for deregulated electricity markets. The Adaptive Learning strategic Bidding System (ALBidS) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM, ALBidS considers several different strategic methodologies based on highly distinct approaches. Six Thinking Hats (STH) is a powerful technique used to look at decisions from different perspectives, forcing the thinker to move outside its usual way of thinking. This paper aims to complement the ALBidS strategies by combining them and taking advantage of their different perspectives through the use of the STH group decision technique. The combination of ALBidS' strategies is performed through the application of a genetic algorithm, resulting in an evolutionary learning approach.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
In recent years a set of production paradigms were proposed in order to capacitate manufacturers to meet the new market requirements, such as the shift in demand for highly customized products resulting in a shorter product life cycle, rather than the traditional mass production standardized consumables. These new paradigms advocate solutions capable of facing these requirements, empowering manufacturing systems with a high capacity to adapt along with elevated flexibility and robustness in order to deal with disturbances, like unexpected orders or malfunctions. Evolvable Production Systems propose a solution based on the usage of modularity and self-organization with a fine granularity level, supporting pluggability and in this way allowing companies to add and/or remove components during execution without any extra re-programming effort. However, current monitoring software was not designed to fully support these characteristics, being commonly based on centralized SCADA systems, incapable of re-adapting during execution to the unexpected plugging/unplugging of devices nor changes in the entire system’s topology. Considering these aspects, the work developed for this thesis encompasses a fully distributed agent-based architecture, capable of performing knowledge extraction at different levels of abstraction without sacrificing the capacity to add and/or remove monitoring entities, responsible for data extraction and analysis, during runtime.