984 resultados para Multi-detector Computed Tomography
Resumo:
Recently, modern cross-sectional imaging techniques such as multi-detector computed tomography (MDCT) have pioneered post mortem investigations, especially in forensic medicine. Such approaches can also be used to investigate bones non-invasively for anthropological purposes. Long bones are often examined in forensic cases because they are frequently discovered and transferred to medico-legal departments for investigation. To estimate their age, the trabecular structure must be examined. This study aimed to compare the performance of MDCT with conventional X-rays to investigate the trabecular structure of long bones. Fifty-two dry bones (24 humeri and 28 femora) from anthropological collections were first examined by conventional X-ray, and then by MDCT. Trabecular structure was evaluated by seven observers (two experienced and five inexperienced in anthropology) who analyzed images obtained by radiological methods. Analyses contained the measurement of one quantitative parameter (caput diameter of humerus and femur) and staging the trabecular structure of each bone. Preciseness of each technique was indicated by describing areas of trabecular destruction and particularities of the bones, such as pathological changes. Concerning quantitative parameters, the measurements demonstrate comparable results for the MDCT and conventional X-ray techniques. In contrast, the overall inter-observer reliability of the staging was low with MDCT and conventional X-ray. Reliability increased significantly when only the results of the staging performed by the two experienced observers were compared, particularly regarding the MDCT analysis. Our results also indicate that MDCT appears to be better suited to a detailed examination of the trabecular structure. In our opinion, MDCT is an adequate tool with which to examine the trabecular structure of long bones. However, adequate methods should be developed or existing methods should be adapted to MDCT.
Resumo:
Investigation of violent death, especially cases of sharp trauma and gunshot, is an important part of medico-legal investigations. Beside the execution of a conventional autopsy, the performance of a post-mortem Multi-Detector Computed Tomography (MDCT)-scan has become a highly appreciated tool. In order to investigate also the vascular system, post-mortem CT-angiography has been introduced. The most studied and widespread technique is the Multi-phase post-mortem CT-angiography (MPMCTA). Its sensitivity to detect vascular lesions is even superior to conventional autopsy. The application of MPMCTA for cases of gunshot and sharp-trauma is therefore an obvious choice, as vascular lesions are common in such victims. In most cases of sharp trauma and in several cases of gunshots, death can be attributed to exsanguinations. MPMCTA is able to detect the exact source of bleeding and also to visualize trajectories, which are of most importance in these cases. The reconstructed images allow to clearly visualizing the trajectory in a way that is easily comprehensible for not medically trained legal professionals. The sensitivity of MPMCTA for soft tissue and organ lesions approximately matches the sensitivity of conventional autopsy. However, special care, experience and effective use of the imaging software is necessary for performing the reconstructions of the trajectory. Large volume consuming haemorrhages and shift of inner organs are sources of errors and misinterpretations. This presentation shall give an overview about the advantages and limitations of the use of MPMCTA for investigating cases of gunshot and sharp-trauma.
Resumo:
Due to important alteration caused by long time decomposition, the gases in human bodies buried for more than a year have not been investigated. For the first time, the results of gas analysis sampled from bodies recently exhumed after 30 years are presented. Adipocere formation has prevented the bodies from too important alteration, and gaseous areas were identified. The sampling was performed with airtight syringes assisted by multi-detector computed tomography (MDCT) in those specific areas. The important amount of methane (CH4), coupled to weak amounts of hydrogen (H2) and carbon dioxide (CO2), usual gaseous alteration indicators, have permitted to confirm methanogenesis mechanism for long period of alteration. H2 and CO2 produced during the first stages of the alteration process were consumed through anaerobic oxidation by methanogenic bacteria, generating CH4.
Resumo:
Postmortem imaging consists in the non-invasive examination of bodies using medical imaging techniques. However, gas volume quantification and the interpretation of the gas collection results from cadavers remain difficult. We used whole-body postmortem multi-detector computed tomography (MDCT) followed by a full autopsy or external examination to detect the gaseous volumes in bodies. Gases were sampled from cardiac cavities, and the sample compositions were analyzed by headspace gas chromatography-mass spectrometry/thermal conductivity detection (HS-GC-MS/TCD). Three categories were defined according to the presumed origin of the gas: alteration/putrefaction, high-magnitude vital gas embolism (e.g., from scuba diving accident) and gas embolism of lower magnitude (e.g., following a traumatic injury). Cadaveric alteration gas was diagnosed even if only one gas from among hydrogen, hydrogen sulfide or methane was detected. In alteration cases, the carbon dioxide/nitrogen ratio was often >0.2, except in the case of advanced alteration, when methane presence was the best indicator. In the gas embolism cases (vital or not), hydrogen, hydrogen sulfide and methane were absent. Moreover, with high-magnitude vital gas embolisms, carbon dioxide content was >20%, and the carbon dioxide/nitrogen ratio was >0.2. With gas embolisms of lower magnitude (gas presence consecutive to a traumatic injury), carbon dioxide content was <20% and the carbon dioxide/nitrogen ratio was often <0.2. We found that gas analysis provided useful assistance to the postmortem imaging diagnosis of causes of death. Based on the quantifications of gaseous cardiac samples, reliable indicators were determined to document causes of death. MDCT examination of the body must be performed as quickly as possible, as does gas sampling, to avoid generating any artifactual alteration gases. Because of cardiac gas composition analysis, it is possible to distinguish alteration gases and gas embolisms of different magnitudes.
Resumo:
The left brachiocephalic vein occasionally follows an aberrant course. It is usually associated with congenital cardiac anomaly. We present a case of anomalous left brachiocephalic vein which followed a sub aortic course, with no cardiac abnormality. Multi detector computed tomography is very useful in accurate diagnosis of this condition and prevents any further investigation in cases of isolated abnormalities.
Resumo:
This article presents a feasibility study with the objective of investigating the potential of multi-detector computed tomography (MDCT) to estimate the bone age and sex of deceased persons. To obtain virtual skeletons, the bodies of 22 deceased persons with known age at death were scanned by MDCT using a special protocol that consisted of high-resolution imaging of the skull, shoulder girdle (including the upper half of the humeri), the symphysis pubis and the upper halves of the femora. Bone and soft-tissue reconstructions were performed in two and three dimensions. The resulting data were investigated by three anthropologists with different professional experience. Sex was determined by investigating three-dimensional models of the skull and pelvis. As a basic orientation for the age estimation, the complex method according to Nemeskéri and co-workers was applied. The final estimation was effected using additional parameters like the state of dentition, degeneration of the spine, etc., which where chosen individually by the three observers according to their experience. The results of the study show that the estimation of sex and age is possible by the use of MDCT. Virtual skeletons present an ideal collection for anthropological studies, because they are obtained in a non-invasive way and can be investigated ad infinitum.
Resumo:
Whereas a non-operative approach for hemodynamically stable patients with free intraabdominal fluid in the presence of solid organ injury is generally accepted, the presence of free fluid in the abdomen without evidence of solid organ injury not only presents a challenge for the treating emergency physician but also for the surgeon in charge. Despite recent advances in imaging modalities, with multi-detector computed tomography (CT) (with or without contrast agent) usually the imaging method of choice, diagnosis and interpretation of the results remains difficult. While some studies conclude that CT is highly accurate and relatively specific at diagnosing mesenteric and hollow viscus injury, others studies deem CT to be unreliable. These differences may in part be due to the experience and the interpretation of the radiologist and/or the treating physician or surgeon.A search of the literature has made it apparent that there is no straightforward answer to the question what to do with patients with free intraabdominal fluid on CT scanning but without signs of solid organ injury. In hemodynamically unstable patients, free intraabdominal fluid in the absence of solid organ injury usually mandates immediate surgical intervention. For patients with blunt abdominal trauma and more than just a trace of free intraabdominal fluid or for patients with signs of peritonitis, the threshold for a surgical exploration - preferably by a laparoscopic approach - should be low. Based on the available information, we aim to provide the reader with an overview of the current literature with specific emphasis on diagnostic and therapeutic approaches to this problem and suggest a possible algorithm, which might help with the adequate treatment of such patients.
Resumo:
Virtual colonoscopy (VC) is a minimally invasive means for identifying colorectal polyps and colorectal lesions by insufflating a patient’s bowel, applying contrast agent via rectal catheter, and performing multi-detector computed tomography (MDCT) scans. The technique is recommended for colonic health screening by the American Cancer Society but not funded by the Centers for Medicare and Medicaid Services (CMS) partially because of potential risks from radiation exposure. To date, no in‐vivo organ dose measurements have been performed for MDCT scans; thus, the accuracy of any current dose estimates is currently unknown. In this study, two TLDs were affixed to the inner lumen of standard rectal catheters used in VC, and in-vivo rectal dose measurements were obtained within 6 VC patients. In order to calculate rectal dose, TLD-100 powder response was characterized at diagnostic doses such that appropriate correction factors could be determined for VC. A third-order polynomial regression with a goodness of fit factor of R2=0.992 was constructed from this data. Rectal dose measurements were acquired with TLDs during simulated VC within a modified anthropomorphic phantom configured to represent three sizes of patients undergoing VC. The measured rectal doses decreased in an exponential manner with increasing phantom effective diameter, with R2=0.993 for the exponential regression model and a maximum percent coefficient of variation (%CoV) of 4.33%. In-vivo measurements yielded rectal doses ranged from that decreased exponentially with increasing patient effective diameter, in a manner that was also favorably predicted by the size specific dose estimate (SSDE) model for all VC patients that were of similar age, body composition, and TLD placement. The measured rectal dose within a younger patient was favorably predicted by the anthropomorphic phantom dose regression model due to similarities in the percentages of highly attenuating material at the respective measurement locations and in the placement of the TLDs. The in-vivo TLD response did not increase in %CoV with decreasing dose, and the largest %CoV was 10.0%.
Resumo:
The aim of the present study was to determine the frequency of atlanto-axial rotatory subluxations (AARS) in multi detector computed tomography (MDCT) performed on human corpses for forensic purposes and to investigate whether these are a physiological postmortem finding or indicate a trauma to the neck region. 80 forensic cases examined with MDCT from November 2003 to March 2007 were included in the study. The study was approved by the regional ethics committee. For each case volumes were rendered and investigated with reference to suspected AARS and any other anomalies of the head and neck region. The rotation of the head as well as in the atlanto-axial joint were measured and occurring AARS were judged according Fielding's classification. The finding of AARS was correlated to case criteria such as postmortem head rotation, sex, age, cause of death, time since death and further autopsy results. Statistical analysis was performed using Fisher's exact test, Wilcoxon's rank sums test and Chi-square test with Pearson approximation. 70% (n=56) of the cases included in the study presented with an AARS. A strong correlation (P<.0001) between suspected AARS and postmortem head rotation was found. Two cases presented with an atlanto-axial rotation greater than the head rotation. One showed an undiscovered lateral dislocation of the atlas, and one an unfused atlas-ring. There was no correlation to any further investigated case criteria. Ipsilateral AARS with head rotation alone does not indicate trauma to the neck. PmCT can substantially support forensic examinations of the skeleton, especially in body regions, which are elaborate to access at autopsy, such as the cervical spine. Isolated AARS (Fielding type I) on pmCT is usually a normal finding associated with ipsilateral head rotation.
Resumo:
Homozygous familial hypercholesterolemia (HoFH) is a rare disorder characterized by the early onset of atherosclerosis, often at the ostia of coronary arteries. In this study we document for the first time that aortic and coronary atherosclerosis can be detected using 64 slice multiple detector row computed tomographic coronary angiography (CTCA). We studied five HoFH patients (three females, two males, mean age 19.8 +/- 2.9 years, age range 15-23 years, with a mean low density lipoprotein (LDL) cholesterol 618 +/- 211 mg/dL) using 64 slice CTCA. None of the patients showed evidence of ischemia with standard exercise testing. Calcified and mixed atherosclerotic plaques adjacent to or compromising the coronary artery ostia were found in all study subjects. Coronary plaques causing significant obstruction were found in one patient, who had previously undergone coronary artery bypass surgery and aortic valve replacement. Two other patients were noted to have non-obstructive calcified, mixed and non-calcified coronary artery plaques. Our data suggest that CTCA could be a useful non-invasive method for detection of early aortic and coronary atherosclerosis specifically affecting the coronary ostia in HoFH subjects. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Recently, stress myocardial computed tomographic perfusion (CTP) was shown to detect myocardial ischemia. Our main objective was to evaluate the feasibility of dipyridamole stress CTP and compare it to single-photon emission computed tomography (SPECT) to detect significant coronary stenosis using invasive conventional coronary angiography (CCA; stenosis >70%) as the reference method. Thirty-six patients (62 +/- 8 years old, 20 men) with previous positive results with SPECT (<2 months) as the primary inclusion criterion and suspected coronary artery disease underwent a customized multidetector-row CT protocol with myocardial perfusion evaluation at rest and during stress and coronary CT angiography (CTA). Multidetector-row computed tomography was performed in a 64-slice scanner with dipyridamole stress perfusion acquisition before a second perfusion/CT angiographic acquisition at rest. Independent blinded observers performed analysis of images from CTP, CTA, and CCA. All 36 patients completed the CT protocol with no adverse events (mean radiation dose 14.7 +/- 3.0 mSv) and with interpretable scans. CTP results were positive in 27 of 36 patients (75%). From the 9 (25%) disagreements, 6 patients had normal coronary arteries and 2 had no significant stenosis (8 false-positive results with SPECT, 22%). The remaining patient had an occluded artery with collateral flow confirmed by conventional coronary angiogram. Good agreement was demonstrated between CTP and SPECT on a per-patient analysis (kappa 0.53). In 26 patients using CCA as reference, sensitivity, specificity, and positive and negative predictive values were 88.0%, 79.3%, 66.7%, and 93.3% for CTP and 68.8, 76.1%, 66.7%, and 77.8%, for SPECT, respectively (p = NS). In conclusion, dipyridamole CT myocardial perfusion at rest and during stress is feasible and results are similar to single-photon emission CT scintigraphy. The anatomical-perfusion information provided by this combined CT protocol may allow identification of false-positive results by SPECT. (C) 2010 Elsevier Inc. All rights reserved. (Am J Cardiol 2010;106:310-315)
Resumo:
The purpose of this article was to review the strategies to control patient dose in adult and pediatric computed tomography (CT), taking into account the change of technology from single-detector row CT to multi-detector row CT. First the relationships between computed tomography dose index, dose length product, and effective dose in adult and pediatric CT are revised, along with the diagnostic reference level concept. Then the effect of image noise as a function of volume computed tomography dose index, reconstructed slice thickness, and the size of the patient are described. Finally, the potential of tube current modulation CT is discussed.
Resumo:
PURPOSE: To assess the technical feasibility of multi-detector row computed tomographic (CT) angiography in the assessment of peripheral arterial bypass grafts and to evaluate its accuracy and reliability in the detection of graft-related complications, including graft stenosis, aneurysmal changes, and arteriovenous fistulas. MATERIALS AND METHODS: Four-channel multi-detector row CT angiography was performed in 65 consecutive patients with 85 peripheral arterial bypass grafts. Each bypass graft was divided into three segments (proximal anastomosis, course of the graft body, and distal anastomosis), resulting in 255 segments. Two readers evaluated all CT angiograms with regard to image quality and the presence of bypass graft-related abnormalities, including graft stenosis, aneurysmal changes, and arteriovenous fistulas. The results were compared with McNemar test with Bonferroni correction. CT attenuation values were recorded at five different locations from the inflow artery to the outflow artery of the bypass graft. These findings were compared with the findings at duplex ultrasonography (US) in 65 patients and the findings at conventional digital subtraction angiography (DSA) in 27. RESULTS: Image quality was rated as good or excellent in 250 (98%) and in 252 (99%) of 255 bypass segments, respectively. There was excellent agreement both between readers and between CT angiography and duplex US in the detection of graft stenosis, aneurysmal changes, and arteriovenous fistulas (kappa = 0.86-0.99). CT angiography and duplex US were compared with conventional DSA, and there was no statistically significant difference (P >.25) in sensitivity or specificity between CT angiography and duplex US for both readers for detection of hemodynamically significant bypass stenosis or occlusion, aneurysmal changes, or arteriovenous fistulas. Mean CT attenuation values ranged from 232 HU in the inflow artery to 281 HU in the outflow artery of the bypass graft. CONCLUSION: Multi-detector row CT angiography may be an accurate and reliable technique after duplex US in the assessment of peripheral arterial bypass grafts and detection of graft-related complications, including stenosis, aneurysmal changes, and arteriovenous fistulas.