970 resultados para Mri Contrast Agents


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Delivering sufficient dose to tumours while sparing surrounding tissue is one of the primary challenges of radiotherapy, and in common practice this is typically achieved by using highly penetrating MV photon beams and spatially shaping dose. However, there has been a recent increase in interest in the possibility of using contrast agents with high atomic number to enhance the dose deposited in tumours when used in conjunction with kV x-rays, which see a significant increase in absorption due to the heavy element's high-photoelectric cross-section at such energies. Unfortunately, the introduction of such contrast agents significantly complicates the comparison of different source types for treatment efficacy, as the dose deposited now depends very strongly on the exact composition of the spectrum, making traditional metrics such as beam quality less valuable. To address this, a 'figure of merit' is proposed, which yields a value which enables the direct comparison of different source types for tumours at different depths inside a patient. This figure of merit is evaluated for a 15 MV LINAC source and two 150 kVp sources (both of which make use of a tungsten target, one with conventional aluminium filtration, while the other uses a more aggressive thorium filter) through analytical methods as well as numerical models, considering tissue treated with a realistic concentration and uptake ratio of gold nanoparticle contrast agents (10 mg ml(-1) concentration in 'tumour' volume, 10: 1 uptake ratio). Finally, a test case of human neck phantom is considered with a similar contrast agent to compare the abstract figure to a more realistic treatment situation. Good agreement was found both between the different approaches to calculate the figure of merit, and between the figure of merit and the effectiveness in a more realistic patient scenario. Together, these observations suggest that there is the potential for contrast-enhanced kilovoltage radiation to be a useful therapeutic tool for a number of classes of tumour on dosimetric considerations alone, and they point to the need for further research in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study shows that the relaxivity and optical properties of functionalised lanthanide-DTPA-bis-amide complexes (lanthanide=Gd3+ and Eu3+, DTPA=diethylene triamine pentaacetic acid) can be successfully modulated by addition of specific anions, without direct Ln3+/anion coordination. Zinc(II)-dipicolylamine moieties, which are known to bind strongly to phosphates, were introduced in the amide “arms” of these ligands, and the interaction of the resulting Gd–Zn2 complexes with a range of anions was screened by using indicator displacement assays (IDAs). Considerable selectivity for polyphosphorylated species (such as pyrophosphate and adenosine-5′-triphosphate (ATP)) over a range of other anions (including monophosphorylated anions) was apparent. In addition, we show that pyrophosphate modulates the relaxivity of the gadolinium(III) complex, this modulation being sufficiently large to be observed in imaging experiments. To establish the binding mode of the pyrophosphate and gain insight into the origin of the relaxometric modulation, a series of studies including UV/Vis and emission spectroscopy, luminescence lifetime measurements in H2O and D2O, 17O and 31P NMR spectroscopy and nuclear magnetic resonance dispersion (NMRD) studies were carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project aimed to engineer new T2 MRI contrast agents for cell labeling based on formulations containing monodisperse iron oxide magnetic nanoparticles (MNP) coated with natural and synthetic polymers. Monodisperse MNP capped with hydrophobic ligands were synthesized by a thermal decomposition method, and further stabilized in aqueous media with citric acid or meso-2,3-dimercaptosuccinic acid (DMSA) through a ligand exchange reaction. Hydrophilic MNP-DMSA, with optimal hydrodynamic size distribution, colloidal stability and magnetic properties, were used for further functionalization with different coating materials. A covalent coupling strategy was devised to bind the biopolymer gum Arabic (GA) onto MNPDMSA and produce an efficient contrast agent, which enhanced cellular uptake in human colorectal carcinoma cells (HCT116 cell line) compared to uncoated MNP-DMSA. A similar protocol was employed to coat MNP-DMSA with a novel biopolymer produced by a biotechnological process, the exopolysaccharide (EPS) Fucopol. Similar to MNP-DMSA-GA, MNP-DMSA-EPS improved cellular uptake in HCT116 cells compared to MNP-DMSA. However, MNP-DMSA-EPS were particularly efficient towards the neural stem/progenitor cell line ReNcell VM, for which a better iron dose-dependent MRI contrast enhancement was obtained at low iron concentrations and short incubation times. A combination of synthetic and biological coating materials was also explored in this project, to design a dynamic tumortargeting nanoprobe activated by the acidic pH of tumors. The pH-dependent affinity pair neutravidin/iminobiotin, was combined in a multilayer architecture with the synthetic polymers poy-L-lysine and poly(ethylene glycol) and yielded an efficient MRI nanoprobe with ability to distinguish cells cultured in acidic pH conditions form cells cultured in physiological pH conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Curcumin possesses wide-ranging anti-inflammatory and anti-cancer properties and its biological activity can be linked to its potent antioxidant capacity. Superparamagnetic maghemite (gamma-Fe2O3), called surface-active maghemite nanoparticles (SAMNs) were surface-modified with curcumin molecules, due to the presence of under-coordinated Fe-III atoms on the nanoparticle surface. The so-obtained curcumin-modified SAMNs (SAMN@curcumin) had a mean size of 13 +/- 4 nm. SAMN@curcumin was characterized by transmission and scanning electron microscopy, UV/Vis, FTIR, and Mossbauer spectroscopy, X-ray powder diffraction, bulk susceptibility (SQUID), and relaxometry measurements (MRI imaging). The high negative contrast proclivity of SAMN@curcumin to act as potential contrast agent in MRI screenings was also tested. Moreover, the redox properties of bound curcumin were probed by electrochemistry. SAMN@curcumin was studied in the presence of different electroactive molecules, namely hydroquinone, NADH and ferrocyanide, to assess its redox behavior. Finally, SAMN@curcumin was electrochemically probed in the presence of hydrogen peroxide, demonstrating the stability and reactivity of bound curcumin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose was to retrospectively review the data of 27 patients with renal insufficiency who underwent conventional angiography with gadolinium-based contrast agents (GDBCA) as alternative contrast agents and assess the occurrence of nephrogenic systemic fibrosis (NSF) together with associated potential risk factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to determine the influence of iodinated contrast agents on the formation of DNA double-strand breaks in vitro in lymphocytes and to verify these results in patients undergoing diagnostic computed tomography examinations. Blood samples were irradiated in vitro in the presence of iodinated X-ray contrast agent. Controls were irradiated without contrast agent. Fourteen patients were investigated using contrast-enhanced computed tomography (CT), and 14 other patients with unenhanced CT. Blood samples were taken prior to and 5 min and 1, 2 and 24 h after the CT examination. In these blood samples the average number of γH2Ax-foci per lymphocyte was enumerated by fluorescence microscopy. Statistical differences between foci numbers developed in the presence and absence of contrast agent were tested using an independent sample t-test. In vitro foci numbers after irradiation were significantly higher when contrast agent was present during irradiation. In vivo, γH2Ax-foci levels were 58% higher in patients undergoing contrast-enhanced CT compared with those undergoing unenhanced CT. In the presence of iodinated contrast agents DNA, damage is increased and the radiation dose is not the only factor affecting the amount of DNA damage. Individual patient characteristics and biological dosimetry applications, e.g. the analysis of γH2Ax-foci, have to be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE In contrast to conventional breast imaging techniques, one major diagnostic benefit of breast magnetic resonance imaging (MRI) is the simultaneous acquisition of morphologic and dynamic enhancement characteristics, which are based on angiogenesis and therefore provide insights into tumor pathophysiology. The aim of this investigation was to intraindividually compare 2 macrocyclic MRI contrast agents, with low risk for nephrogenic systemic fibrosis, in the morphologic and dynamic characterization of histologically verified mass breast lesions, analyzed by blinded human evaluation and a fully automatic computer-assisted diagnosis (CAD) technique. MATERIALS AND METHODS Institutional review board approval and patient informed consent were obtained. In this prospective, single-center study, 45 women with 51 histopathologically verified (41 malignant, 10 benign) mass lesions underwent 2 identical examinations at 1.5 T (mean time interval, 2.1 days) with 0.1-mmol kg doses of gadoteric acid and gadobutrol. All magnetic resonance images were visually evaluated by 2 experienced, blinded breast radiologists in consensus and by an automatic CAD system, whereas the morphologic and dynamic characterization as well as the final human classification of lesions were performed based on the categories of the Breast imaging reporting and data system MRI atlas. Lesions were also classified by defining their probability of malignancy (morpho-dynamic index; 0%-100%) by the CAD system. Imaging results were correlated with histopathology as gold standard. RESULTS The CAD system coded 49 of 51 lesions with gadoteric acid and gadobutrol (detection rate, 96.1%); initial signal increase was significantly higher for gadobutrol than for gadoteric acid for all and the malignant coded lesions (P < 0.05). Gadoteric acid resulted in more postinitial washout curves and fewer continuous increases of all and the malignant lesions compared with gadobutrol (CAD hot spot regions, P < 0.05). Morphologically, the margins of the malignancies were different between the 2 agents, whereas gadobutrol demonstrated more spiculated and fewer smooth margins (P < 0.05). Lesion classifications by the human observers and by the morpho-dynamic index compared with the histopathologic results did not significantly differ between gadoteric acid and gadobutrol. CONCLUSIONS Macrocyclic contrast media can be reliably used for breast dynamic contrast-enhanced MRI. However, gadoteric acid and gadobutrol differed in some dynamic and morphologic characterization of histologically verified breast lesions in an intraindividual, comparison. Besides the standardization of technical parameters and imaging evaluation of breast MRI, the standardization of the applied contrast medium seems to be important to receive best comparable MRI interpretation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In hemodialysis patients, radiographic imaging with iodinated contrast medium (ICM) application plays a central role in the diagnosis and/or follow-up of disease-related conditions. Therefore, safety aspects concerning ICM administration and radiation exposure have a great impact on this group of patients. Current hardware and software improvements including the design and synthesis of modern contrast compounds allow the use of very small amounts of ICM in concert with low radiation exposure. Undesirable ICM side effects are divided into type A (predictable reactions such as heat feeling, headache, and contrast-induced acute kidney injury, for example) and type B (nonpredictable or hypersensitivity) reactions; this chapter deals with the latter. The first onset cannot be prevented. To prevent hypersensitivity upon reexposure of ICM, an allergological workup is recommended. If this is not possible and ICM is necessary, the patient should receive a premedication (H1 antihistamine with or without corticosteroids). Current imaging hardware and software improvements (e.g. such as additional filtration of the X-ray beam) allow the use of very small amount of ICM and small X-ray doses. Proper communication among the team involved in the treatment of a patient may allow to apply imaging protocols and efficient imaging strategies limiting radiation exposure to a minimum. Practical recommendations will guide the reader how to use radiation and ICM efficiently to improve both patient and staff safety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To determine the effect of the use of iodinated contrast agents on the formation of DNA double-strand breaks during chest computed tomography (CT). MATERIALS AND METHODS This study was approved by the institutional review board, and written informed consent was obtained from all patients. This single-center study was performed at a university hospital. A total of 179 patients underwent contrast material-enhanced CT, and 66 patients underwent unenhanced CT. Blood samples were taken from these patients prior to and immediately after CT. In these blood samples, the average number of phosphorylated histone H2AX (γH2AX) foci per lymphocyte was determined with fluorescence microscopy. Significant differences between the number of foci that developed in both the presence and the absence of the contrast agent were tested by using an independent sample t test. RESULTS γH2AX foci levels were increased in both groups after CT. Patients who underwent contrast-enhanced CT had an increased amount of DNA radiation damage (mean increase ± standard error of the mean, 0.056 foci per cell ± 0.009). This increase was 107% ± 19 higher than that in patients who underwent unenhanced CT (mean increase, 0.027 foci per cell ± 0.014). CONCLUSION The application of iodinated contrast agents during diagnostic x-ray procedures, such as chest CT, leads to a clear increase in the level of radiation-induced DNA damage as assessed with γH2AX foci formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to prepare gas-filled lipid-coated microbubbles as potential MRI contrast agents for imaging of fluid pressure. Air-filled microbubbles were produced with phospholipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in the presence or absence of cholesterol and/or polyethylene-glycol distearate (PEG-distearate). Microbubbles were also prepared containing a fluorinated phospholipid, perfluoroalkylated glycerol-phosphatidylcholine, F-GPC shells encompassing perfluorohexane-saturated nitrogen gas. These microbubbles were evaluated in terms of physico-chemical characteristics such as size and stability. In parallel to these studies, DSPC microbubbles were also formulated containing nitrogen (N2) gas and compared to air-filled microbubbles. By preventing advection, signal drifts were used to assess their stability. DSPC microbubbles were found to have a drift of 20% signal change per bar of applied pressure in contrast to the F-GPC microbubbles which are considerably more stable with a lower drift of 5% signal change per bar of applied pressure. By increasing the pressure of the system and monitoring the MR signal intensity, the point at which the majority of the microbubbles have been damaged was determined. For the DSPC microbubbles this occurs at 1.3 bar whilst the F-GPC microbubbles withstand pressures up to 2.6 bar. For the comparison between air-filled and N2-filled microbubbles, the MRI sensitivity is assessed by cycling the pressure of the system and monitoring the MR signal intensity. It was found that the sensitivity exhibited by the N2-filled microbubbles remained constant, whilst the air-filled microbubbles demonstrated a continuous drop in sensitivity due to continuous bubble damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lanthanide complexes have recently received considerable attention in the field of therapeutic and diagnostic medicines. Among many applications of lanthanides, gadolinium complexes are used as magnetic resonance imaging (MRI) contrast agents in clinical radiology and luminescent lanthanides for bioanalysis, imaging and sensing. The chemistry of photoactive lanthanide complexes showing biological applications is of recent origin. Photodynamic therapy (PDT) is a non-invasive treatment modality of cancer using a photosensitizer drug and light. This review primarily focuses on different aspects of the chemistry of lanthanide complexes showing photoactivated DNA cleavage activity and cytotoxicity in cancer cells. Macrocyclic texaphyrin-lanthanide complexes are known to show photocytotoxicity with the PDT effect in near-IR light. Very recently, non-macrocyclic lanthanide complexes are reported to show photocytotoxicity in cancer cells. Attempts have been made in this perspective article to review and highlight the photocytotoxic behaviour of various lanthanide complexes for their potential photochemotherapeutic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

磁共振成像(magnetic resonance imaging, MRI)以其分辨率高、对人体无电离辐射损伤、多参数成像等优点而得到迅速发展和广泛应用。目前,MRI已从单一形态学向分子影像学的深度发展,对医学临床和医学研究产生了巨大影响。为了提高病变部位与正常组织间信号的对比度,约30%~40%的诊断需要使用磁共振成像造影剂。它是一类能缩短成像时间、提高成像对比度和清晰度、显示组织器官功能状态的诊断用药。下一代磁共振成像造影剂的设计目标将集中在对特定组织或器官具有选择性或靶向性、高弛豫性能和减少用药剂量等方面。本论文在此领域的研究内容可归纳如下: (1) 以多糖为载体的MRI造影剂 设计合成了阿拉伯半乳聚糖修饰的Gd-DTPA配合物(Gd-DTPA-CMAG-An)和葡聚糖修饰的Gd-DTPA配合物(Gd-DTPA-CMDn-Cyst)。通过体外弛豫时间测试和体内磁共振成像实验研究了Gd-DTPA-CMAG-An弛豫性能、器官选择性、体内滞留时间和代谢情况,结合体外稳定性综合评价了其应用于临床的可能性。研究结果表明,Gd-DTPA-CMAG-An配合物在水溶液中弛豫性能为Gd-DTPA的1.4倍左右,Gd-DTPA-CMAG-A2对肝脏信号的增强效果是Gd-DTPA的2.0倍左右,并且能在较长时间内产生良好稳定的增强效果。这与肝脏表面的去唾液酸糖蛋白受体的专一性识别有关。Gd-DTPA-CMAG-A2良好的肝脏选择性和肾脏代谢能力,有望成为有前景的肝脏选择性造影剂。通过小鼠MRI实验初步评价了Gd-DTPA-CMDn-Cyst配合物造影剂对血管信号的增强作用。Gd-DTPA-CMD4-Cyst对血管产生了良好的增强效果,并且能在较长时间内对血管产生良好稳定的增强,从而有充分的时间优化成像窗口获得理想的成像效果。但造影剂在体内的分布和代谢是一个非常复杂的过程,Gd-DTPA-CMD4-Cyst在血液中的滞留情况及能否用于血管造影仍需进一步的实验证实。 (2) MnNaY 型分子筛作为胃肠道MRI造影剂 离子交换法制备了Mn2+交换的NaY分子筛MnNaY,从对造影剂的一般要求出发,对其酸性水溶液中的稳定性和离子交换选择性、体外弛豫性能和体内成像等方面进行研究,并对器官的选择性及体内滞留时间和代谢情况进行了分析,从而对其应用于临床的可能性进行了探讨。研究结果表明,MnNaY悬浮液能长时间在较低的酸性条件下保持良好的稳定性,其弛豫效率高于目前临床所用造影剂Gd-DTPA,随Mn2+的含量在NaY分子筛中的增加(3.2%~5.2%),弛豫效率反而降低。MnNaY (3.2% Mn)对胃部具有良好的增强效果,并且能在较长时间内产生良好稳定的增强效果,有利于获得理想的成像效果。它是一种比较好的潜在口服胃肠道造影剂。 (3) 甘草酸为载体的MRI造影剂 合成了甘草酸为载体的配合物GL-(A-Gd-DTPA)3,对其体外弛豫性能和体内成像等方面进行了研究,结果表明,其在水中的弛豫效率约为目前临床所用造影剂Gd-DTPA的1.4倍,体内成像表明它能在较长时间内对大鼠肝脏产生良好稳定的增强效果,这是由于肝(实质)细胞膜表面存在GL和GA受体,Gd-DTPA 以GL为载体后具有良好的趋肝性与肝细胞靶向性。 (4) 中性的Gd-DTPA双酰胺衍生物 合成了两种中性的Gd-DTPA双酰胺衍生物Gd-DTPA-BBA和Gd-DTPA-BtBA,其弛豫效率与Gd-DTPA相近,对肝脏和肾脏具有较好的增强效果,由于这两种配合物均为电中性化合物,这样配合物溶液的渗透压值与血液的渗透压值较接近,可能更易为生物体所接受。