941 resultados para Motion capture, Cammino, mMrkerless, Segmentazione
Resumo:
Model-based optical motion capture systems require knowledge of the position of the markers relative to the underlying skeleton, the lengths of the skeleton's limbs, and which limb each marker is attached to. These model parameters are typically assumed and entered into the system manually, although techniques exist for calculating some of them, such as the position of the markers relative to the skeleton's joints. We present a fully automatic procedure for determining these model parameters. It tracks the 2D positions of the markers on the cameras' image planes and determines which markers lie on each limb before calculating the position of the underlying skeleton. The only assumption is that the skeleton consists of rigid limbs connected with ball joints. The proposed system is demonstrated on a number of real data examples and is shown to calculate good estimates of the model parameters in each. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Optical motion capture systems suffer from marker occlusions resulting in loss of useful information. This paper addresses the problem of real-time joint localisation of legged skeletons in the presence of such missing data. The data is assumed to be labelled 3d marker positions from a motion capture system. An integrated framework is presented which predicts the occluded marker positions using a Variable Turn Model within an Unscented Kalman filter. Inferred information from neighbouring markers is used as observation states; these constraints are efficient, simple, and real-time implementable. This work also takes advantage of the common case that missing markers are still visible to a single camera, by combining predictions with under-determined positions, resulting in more accurate predictions. An Inverse Kinematics technique is then applied ensuring that the bone lengths remain constant over time; the system can thereby maintain a continuous data-flow. The marker and Centre of Rotation (CoR) positions can be calculated with high accuracy even in cases where markers are occluded for a long period of time. Our methodology is tested against some of the most popular methods for marker prediction and the results confirm that our approach outperforms these methods in estimating both marker and CoR positions. © 2012 Springer-Verlag.