924 resultados para Morphological Operators


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La presente Tesis investiga el campo del reconocimiento automático de imágenes mediante ordenador aplicado al análisis de imágenes médicas en mamografía digital. Hay un interés por desarrollar sistemas de aprendizaje que asistan a los radiólogos en el reconocimiento de las microcalcificaciones para apoyarles en los programas de cribado y prevención del cáncer de mama. Para ello el análisis de las microcalcificaciones se ha revelado como técnica clave de diagnóstico precoz, pero sin embargo el diseño de sistemas automáticos para reconocerlas es complejo por la variabilidad y condiciones de las imágenes mamográficas. En este trabajo se analizan los planteamientos teóricos de diseño de sistemas de reconocimiento de imágenes, con énfasis en los problemas específicos de detección y clasificación de microcalcificaciones. Se ha realizado un estudio que incluye desde las técnicas de operadores morfológicos, redes neuronales, máquinas de vectores soporte, hasta las más recientes de aprendizaje profundo mediante redes neuronales convolucionales, contemplando la importancia de los conceptos de escala y jerarquía a la hora del diseño y sus implicaciones en la búsqueda de la arquitectura de conexiones y capas de la red. Con estos fundamentos teóricos y elementos de diseño procedentes de otros trabajos en este área realizados por el autor, se implementan tres sistemas de reconocimiento de mamografías que reflejan una evolución tecnológica, culminando en un sistema basado en Redes Neuronales Convolucionales (CNN) cuya arquitectura se diseña gracias al análisis teórico anterior y a los resultados prácticos de análisis de escalas llevados a cabo en nuestra base de datos de imágenes. Los tres sistemas se entrenan y validan con la base de datos de mamografías DDSM, con un total de 100 muestras de entrenamiento y 100 de prueba escogidas para evitar sesgos y reflejar fielmente un programa de cribado. La validez de las CNN para el problema que nos ocupa queda demostrada y se propone un camino de investigación para el diseño de su arquitectura. ABSTRACT This Dissertation investigates the field of computer image recognition applied to medical imaging in mammography. There is an interest in developing learning systems to assist radiologists in recognition of microcalcifications to help them in screening programs for prevention of breast cancer. Analysis of microcalcifications has emerged as a key technique for early diagnosis of breast cancer, but the design of automatic systems to recognize them is complicated by the variability and conditions of mammographic images. In this Thesis the theoretical approaches to design image recognition systems are discussed, with emphasis on the specific problems of detection and classification of microcalcifications. Our study includes techniques ranging from morphological operators, neural networks and support vector machines, to the most recent deep convolutional neural networks. We deal with learning theory by analyzing the importance of the concepts of scale and hierarchy at the design stage and its implications in the search for the architecture of connections and network layers. With these theoretical facts and design elements coming from other works in this area done by the author, three mammogram recognition systems which reflect technological developments are implemented, culminating in a system based on Convolutional Neural Networks (CNN), whose architecture is designed thanks to the previously mentioned theoretical study and practical results of analysis conducted on scales in our image database. All three systems are trained and validated against the DDSM mammographic database, with a total of 100 training samples and 100 test samples chosen to avoid bias and stand for a real screening program. The validity of the CNN approach to the problem is demonstrated and a research way to help in designing the architecture of these networks is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to present a new geometric model based on the mathematical morphology paradigm, specialized to provide determinism to the classic morphological operations. The determinism is needed to model dynamic processes that require an order of application, as is the case for designing and manufacturing objects in CAD/CAM environments. Design/methodology/approach – The basic trajectory-based operation is the basis of the proposed morphological specialization. This operation allows the definition of morphological operators that obtain sequentially ordered sets of points from the boundary of the target objects, inexistent determinism in the classical morphological paradigm. From this basic operation, the complete set of morphological operators is redefined, incorporating the concept of boundary and determinism: trajectory-based erosion and dilation, and other morphological filtering operations. Findings – This new morphological framework allows the definition of complex three-dimensional objects, providing arithmetical support to generating machining trajectories, one of the most complex problems currently occurring in CAD/CAM. Originality/value – The model proposes the integration of the processes of design and manufacture, so that it avoids the problems of accuracy and integrity that present other classic geometric models that divide these processes in two phases. Furthermore, the morphological operative is based on points sets, so the geometric data structures and the operations are intrinsically simple and efficient. Another important value that no excessive computational resources are needed, because only the points in the boundary are processed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mathematical Morphology presents a systematic approach to extract geometric features of binary images, using morphological operators that transform the original image into another by means of a third image called structuring element and came out in 1960 by researchers Jean Serra and George Matheron. Fuzzy mathematical morphology extends the operators towards grayscale and color images and was initially proposed by Goetherian using fuzzy logic. Using this approach it is possible to make a study of fuzzy connectives, which allows some scope for analysis for the construction of morphological operators and their applicability in image processing. In this paper, we propose the development of morphological operators fuzzy using the R-implications for aid and improve image processing, and then to build a system with these operators to count the spores mycorrhizal fungi and red blood cells. It was used as the hypothetical-deductive methodologies for the part formal and incremental-iterative for the experimental part. These operators were applied in digital and microscopic images. The conjunctions and implications of fuzzy morphology mathematical reasoning will be used in order to choose the best adjunction to be applied depending on the problem being approached, i.e., we will use automorphisms on the implications and observe their influence on segmenting images and then on their processing. In order to validate the developed system, it was applied to counting problems in microscopic images, extending to pathological images. It was noted that for the computation of spores the best operator was the erosion of Gödel. It developed three groups of morphological operators fuzzy, Lukasiewicz, And Godel Goguen that can have a variety applications

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several are the areas in which digital images are used in solving day-to-day problems. In medicine the use of computer systems have improved the diagnosis and medical interpretations. In dentistry it’s not different, increasingly procedures assisted by computers have support dentists in their tasks. Set in this context, an area of dentistry known as public oral health is responsible for diagnosis and oral health treatment of a population. To this end, oral visual inspections are held in order to obtain oral health status information of a given population. From this collection of information, also known as epidemiological survey, the dentist can plan and evaluate taken actions for the different problems identified. This procedure has limiting factors, such as a limited number of qualified professionals to perform these tasks, different diagnoses interpretations among other factors. Given this context came the ideia of using intelligent systems techniques in supporting carrying out these tasks. Thus, it was proposed in this paper the development of an intelligent system able to segment, count and classify teeth from occlusal intraoral digital photographic images. The proposed system makes combined use of machine learning techniques and digital image processing. We first carried out a color-based segmentation on regions of interest, teeth and non teeth, in the images through the use of Support Vector Machine. After identifying these regions were used techniques based on morphological operators such as erosion and transformed watershed for counting and detecting the boundaries of the teeth, respectively. With the border detection of teeth was possible to calculate the Fourier descriptors for their shape and the position descriptors. Then the teeth were classified according to their types through the use of the SVM from the method one-against-all used in multiclass problem. The multiclass classification problem has been approached in two different ways. In the first approach we have considered three class types: molar, premolar and non teeth, while the second approach were considered five class types: molar, premolar, canine, incisor and non teeth. The system presented a satisfactory performance in the segmenting, counting and classification of teeth present in the images.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several are the areas in which digital images are used in solving day-to-day problems. In medicine the use of computer systems have improved the diagnosis and medical interpretations. In dentistry it’s not different, increasingly procedures assisted by computers have support dentists in their tasks. Set in this context, an area of dentistry known as public oral health is responsible for diagnosis and oral health treatment of a population. To this end, oral visual inspections are held in order to obtain oral health status information of a given population. From this collection of information, also known as epidemiological survey, the dentist can plan and evaluate taken actions for the different problems identified. This procedure has limiting factors, such as a limited number of qualified professionals to perform these tasks, different diagnoses interpretations among other factors. Given this context came the ideia of using intelligent systems techniques in supporting carrying out these tasks. Thus, it was proposed in this paper the development of an intelligent system able to segment, count and classify teeth from occlusal intraoral digital photographic images. The proposed system makes combined use of machine learning techniques and digital image processing. We first carried out a color-based segmentation on regions of interest, teeth and non teeth, in the images through the use of Support Vector Machine. After identifying these regions were used techniques based on morphological operators such as erosion and transformed watershed for counting and detecting the boundaries of the teeth, respectively. With the border detection of teeth was possible to calculate the Fourier descriptors for their shape and the position descriptors. Then the teeth were classified according to their types through the use of the SVM from the method one-against-all used in multiclass problem. The multiclass classification problem has been approached in two different ways. In the first approach we have considered three class types: molar, premolar and non teeth, while the second approach were considered five class types: molar, premolar, canine, incisor and non teeth. The system presented a satisfactory performance in the segmenting, counting and classification of teeth present in the images.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Automatic segmentation and tracking of the coronary artery tree from Cardiac Multislice-CT images is an important goal to improve the diagnosis and treatment of coronary artery disease. This paper presents a semi-automatic algorithm (one input point per vessel) based on morphological grayscale local reconstructions in 3D images devoted to the extraction of the coronary artery tree. The algorithm has been evaluated in the framework of the Coronary Artery Tracking Challenge 2008 [1], obtaining consistent results in overlapping measurements (a mean of 70% of the vessel well tracked). Poor results in accuracy measurements suggest that future work should refine the centerline extraction. The algorithm can be efficiently implemented and its general strategy can be easily extrapolated to a completely automated centerline extraction or to a user interactive vessel extraction

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose to directly process 3D + t image sequences with mathematical morphology operators, using a new classi?cation of the 3D+t structuring elements. Several methods (?ltering, tracking, segmentation) dedicated to the analysis of 3D + t datasets of zebra?sh embryogenesis are introduced and validated through a synthetic dataset. Then, we illustrate the application of these methods to the analysis of datasets of zebra?sh early development acquired with various microscopy techniques. This processing paradigm produces spatio-temporal coherent results as it bene?ts from the intrinsic redundancy of the temporal dimension, and minimizes the needs for human intervention in semi-automatic algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematical morphology addresses the problem of describing shapes in an n-dimensional space using the concepts of set theory. A series of standardized morphological operations are defined, and they are applied to the shapes to transform them using another shape called the structuring element. In an industrial environment, the process of manufacturing a piece is based on the manipulation of a primitive object via contact with a tool that transforms the object progressively to obtain the desired design. The analogy with the morphological operation of erosion is obvious. Nevertheless, few references about the relation between the morphological operations and the process of design and manufacturing can be found. The non-deterministic nature of classic mathematical morphology makes it very difficult to adapt their basic operations to the dynamics of concepts such as the ordered trajectory. A new geometric model is presented, inspired by the classic morphological paradigm, which can define objects and apply morphological operations that transform these objects. The model specializes in classic morphological operations, providing them with the determinism inherent in dynamic processes that require an order of application, as is the case for designing and manufacturing objects in professional computer-aided design and manufacturing (CAD/CAM) environments. The operators are boundary-based so that only the points in the frontier are handled. As a consequence, the process is more efficient and more suitable for use in CAD/CAM systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The taxonomic status of a disjunctive population of Phyllomedusa from southern Brazil was diagnosed using molecular, chromosomal, and morphological approaches, which resulted in the recognition of a new species of the P. hypochondrialis group. Here, we describe P. rustica sp. n. from the Atlantic Forest biome, found in natural highland grassland formations on a plateau in the south of Brazil. Phylogenetic inferences placed P. rustica sp. n. in a subclade that includes P. rhodei + all the highland species of the clade. Chromosomal morphology is conservative, supporting the inference of homologies among the karyotypes of the species of this genus. Phyllomedusa rustica is apparently restricted to its type-locality, and we discuss the potential impact on the strategies applied to the conservation of the natural grassland formations found within the Brazilian Atlantic Forest biome in southern Brazil. We suggest that conservation strategies should be modified to guarantee the preservation of this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spores of the tropical mosses Pyrrhobryum spiniforme, Neckeropsis undulata and N. disticha were characterized regarding size, number per capsule and viability. Chemical substances were analyzed for P. spiniforme and N. undulata spores. Length of sporophyte seta (spore dispersal ability) was analyzed for P. spiniforme. Four to six colonies per species in each site (lowland and highland areas of an Atlantic Forest; Serra do Mar State Park, Brazil) were visited for the collection of capsules (2008 - 2009). Neckeropsis undulata in the highland area produced the largest spores (ca. 19 µm) with the highest viability. The smallest spores were found in N. disticha in the lowland (ca. 13 µm). Pyrrhobryum spiniforme produced more spores per capsule in the highland (ca. 150,000) than in lowland (ca. 40,000); longer sporophytic setae in the lowland (ca. 64 mm) than in the highland (ca. 43 mm); and similar sized spores in both areas (ca. 16 µm). Spores of N. undulata and P. spiniforme contained lipids and proteins in the cytoplasm, and acid/neutral lipids and pectins in the wall. Lipid bodies were larger in N. undulata than in P. spiniforme. No starch was recorded for spores. Pyrrhobryum spiniforme in the highland area, different from lowland, was characterized by low reproductive effort, but presented many spores per capsule.