973 resultados para Monitoring learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently the world around us "reboots" every minute and “staying at the forefront” seems to be a very arduous task. The continuous and “speeded” progress of society requires, from all the actors, a dynamic and efficient attitude both in terms progress monitoring and moving adaptation. With regard to education, no matter how updated we are in relation to the contents, the didactic strategies and technological resources, we are inevitably compelled to adapt to new paradigms and rethink the traditional teaching methods. It is in this context that the contribution of e-learning platforms arises. Here teachers and students have at their disposal new ways to enhance the teaching and learning process, and these platforms are seen, at the present time, as significant virtual teaching and learning supporting environments. This paper presents a Project and attempts to illustrate the potential that new technologies present as a “backing” tool in different stages of teaching and learning at different levels and areas of knowledge, particularly in Mathematics. We intend to promote a constructive discussion moment, exposing our actual perception - that the use of the Learning Management System Moodle, by Higher Education teachers, as supplementary teaching-learning environment for virtual classroom sessions can contribute for greater efficiency and effectiveness of teaching practice and to improve student achievement. Regarding the Learning analytics experience we will present a few results obtained with some assessment Learning Analytics tools, where we profoundly felt that the assessment of students’ performance in online learning environments is a challenging and demanding task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Teaching and learning computer programming is as challenging as difficult. Assessing the work of students and providing individualised feedback to all is time-consuming and error prone for teachers and frequently involves a time delay. The existent tools and specifications prove to be insufficient in complex evaluation domains where there is a greater need to practice. At the same time Massive Open Online Courses (MOOC) are appearing revealing a new way of learning, more dynamic and more accessible. However this new paradigm raises serious questions regarding the monitoring of student progress and its timely feedback. This paper provides a conceptual design model for a computer programming learning environment. This environment uses the portal interface design model gathering information from a network of services such as repositories and program evaluators. The design model includes also the integration with learning management systems, a central piece in the MOOC realm, endowing the model with characteristics such as scalability, collaboration and interoperability. This model is not limited to the domain of computer programming and can be adapted to any complex area that requires systematic evaluation with immediate feedback.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology, Neuroscience

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Extrat] The answer to the social and economic challenges that it is assumed literacy (or its lack) puts to developed countries deeply concerns public policies of governments namely those of the OECD area. In the last decades, these concerns gave origin to several and diverse monitoring devices, initiatives and programmes for reading (mainly) development, putting a strong stress on education. UNESCO (2006, p. 6), for instance, assumes that the literacy challenge can only be met raising the quality of primary and secondary education and intensifying programmes explicitly oriented towards youth and adult literacy. (...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performance monitoring, ERN, CRN, Pe, Memory, Llist learning, Emotion, IAPS, N2, Reinforcement Learning Hypothesis, Conflict Monitoring Hypothesis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years there has been an explosive growth in the development of adaptive and data driven methods. One of the efficient and data-driven approaches is based on statistical learning theory (Vapnik 1998). The theory is based on Structural Risk Minimisation (SRM) principle and has a solid statistical background. When applying SRM we are trying not only to reduce training error ? to fit the available data with a model, but also to reduce the complexity of the model and to reduce generalisation error. Many nonlinear learning procedures recently developed in neural networks and statistics can be understood and interpreted in terms of the structural risk minimisation inductive principle. A recent methodology based on SRM is called Support Vector Machines (SVM). At present SLT is still under intensive development and SVM find new areas of application (www.kernel-machines.org). SVM develop robust and non linear data models with excellent generalisation abilities that is very important both for monitoring and forecasting. SVM are extremely good when input space is high dimensional and training data set i not big enough to develop corresponding nonlinear model. Moreover, SVM use only support vectors to derive decision boundaries. It opens a way to sampling optimization, estimation of noise in data, quantification of data redundancy etc. Presentation of SVM for spatially distributed data is given in (Kanevski and Maignan 2004).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a novel method for monitoring network optimisation, based on a recent machine learning technique known as support vector machine. It is problem-oriented in the sense that it directly answers the question of whether the advised spatial location is important for the classification model. The method can be used to increase the accuracy of classification models by taking a small number of additional measurements. Traditionally, network optimisation is performed by means of the analysis of the kriging variances. The comparison of the method with the traditional approach is presented on a real case study with climate data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Learning Affect Monitor (LAM) is a new computer-based assessment system integrating basic dimensional evaluation and discrete description of affective states in daily life, based on an autonomous adapting system. Subjects evaluate their affective states according to a tridimensional space (valence and activation circumplex as well as global intensity) and then qualify it using up to 30 adjective descriptors chosen from a list. The system gradually adapts to the user, enabling the affect descriptors it presents to be increasingly relevant. An initial study with 51 subjects, using a 1 week time-sampling with 8 to 10 randomized signals per day, produced n = 2,813 records with good reliability measures (e.g., response rate of 88.8%, mean split-half reliability of .86), user acceptance, and usability. Multilevel analyses show circadian and hebdomadal patterns, and significant individual and situational variance components of the basic dimension evaluations. Validity analyses indicate sound assignment of qualitative affect descriptors in the bidimensional semantic space according to the circumplex model of basic affect dimensions. The LAM assessment module can be implemented on different platforms (palm, desk, mobile phone) and provides very rapid and meaningful data collection, preserving complex and interindividually comparable information in the domain of emotion and well-being.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the experimental results and evaluation of the SmartBox stimulation device in P2P e-learning system which is based on JXTA-Overlay. We also show the design and implementation of the SmartBox environment that is used for stimulating the learners motivation to increase the learning efficiency. The SmartBox is integrated with our P2P system as a useful tool for monitoring and controlling learners¿ activity. We found by experimental results that the SmartBox is an effective way to increase the learner¿s concentration. We also investigated the relation between learner¿s body movement, concentration, and amount of study. From the experimental results, we conclude that the use of SmartBox is an effective way to stimulate the learners in order to continue studying while maintaining the concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In 2007, a first survey on undergraduate palliative care teaching in Switzerland has revealed major heterogeneity of palliative care content, allocation of hours and distribution throughout the 6 year curriculum in Swiss medical faculties. This second survey in 2012/13 has been initiated as part of the current Swiss national strategy in palliative care (2010 - 2015) to serve as a longitudinal monitoring instrument and as a basis for redefinition of palliative care learning objectives and curriculum planning in our country. METHODS: As in 2007, a questionnaire was sent to the deans of all five medical faculties in Switzerland in 2012. It consisted of eight sections: basic background information, current content and hours in dedicated palliative care blocks, current palliative care content in other courses, topics related to palliative care presented in other courses, recent attempts at improving palliative care content, palliative care content in examinations, challenges, and overall summary. Content analysis was performed and the results matched with recommendations from the EAPC for undergraduate training in palliative medicine as well as with recommendations from overseas countries. RESULTS: There is a considerable increase in palliative care content, academic teaching staff and hours in all medical faculties compared to 2007. No Swiss medical faculty reaches the range of 40 h dedicated specifically to palliative care as recommended by the EAPC. Topics, teaching methods, distribution throughout different years and compulsory attendance still differ widely. Based on these results, the official Swiss Catalogue of Learning Objectives (SCLO) was complemented with 12 new learning objectives for palliative and end of life care (2013), and a national basic script for palliative care was published (2015). CONCLUSION: Performing periodic surveys of palliative care teaching at national medical faculties has proven to be a useful tool to adapt the national teaching framework and to improve the recognition of palliative medicine as an integral part of medical training.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automation or semi-automation of learning scenariospecifications is one of the least exploredsubjects in the e-learning research area. There isa need for a catalogue of learning scenarios and atechnique to facilitate automated retrieval of stored specifications. This requires constructing anontology with this goal and is justified inthis paper. This ontology must mainlysupport a specification technique for learning scenarios. This ontology should also be useful in the creation and validation of new scenarios as well as in the personalization of learning scenarios or their monitoring. Thus, after justifying the need for this ontology, a first approach of a possible knowledge domain is presented. An example of a concrete learning scenario illustrates some relevant concepts supported by this ontology in order to define the scenario in such a way that it could be easy to automate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally metacognition has been theorised, methodologically studied and empirically tested from the standpoint mainly of individuals and their learning contexts. In this dissertation the emergence of metacognition is analysed more broadly. The aim of the dissertation was to explore socially shared metacognitive regulation (SSMR) as part of collaborative learning processes taking place in student dyads and small learning groups. The specific aims were to extend the concept of individual metacognition to SSMR, to develop methods to capture and analyse SSMR and to validate the usefulness of the concept of SSMR in two different learning contexts; in face-to-face student dyads solving mathematical word problems and also in small groups taking part in inquiry-based science learning in an asynchronous computer-supported collaborative learning (CSCL) environment. This dissertation is comprised of four studies. In Study I, the main aim was to explore if and how metacognition emerges during problem solving in student dyads and then to develop a method for analysing the social level of awareness, monitoring, and regulatory processes emerging during the problem solving. Two dyads comprised of 10-year-old students who were high-achieving especially in mathematical word problem solving and reading comprehension were involved in the study. An in-depth case analysis was conducted. Data consisted of over 16 (30–45 minutes) videotaped and transcribed face-to-face sessions. The dyads solved altogether 151 mathematical word problems of different difficulty levels in a game-format learning environment. The interaction flowchart was used in the analysis to uncover socially shared metacognition. Interviews (also stimulated recall interviews) were conducted in order to obtain further information about socially shared metacognition. The findings showed the emergence of metacognition in a collaborative learning context in a way that cannot solely be explained by individual conception. The concept of socially-shared metacognition (SSMR) was proposed. The results highlighted the emergence of socially shared metacognition specifically in problems where dyads encountered challenges. Small verbal and nonverbal signals between students also triggered the emergence of socially shared metacognition. Additionally, one dyad implemented a system whereby they shared metacognitive regulation based on their strengths in learning. Overall, the findings suggested that in order to discover patterns of socially shared metacognition, it is important to investigate metacognition over time. However, it was concluded that more research on socially shared metacognition, from larger data sets, is needed. These findings formed the basis of the second study. In Study II, the specific aim was to investigate whether socially shared metacognition can be reliably identified from a large dataset of collaborative face-to-face mathematical word problem solving sessions by student dyads. We specifically examined different difficulty levels of tasks as well as the function and focus of socially shared metacognition. Furthermore, the presence of observable metacognitive experiences at the beginning of socially shared metacognition was explored. Four dyads participated in the study. Each dyad was comprised of high-achieving 10-year-old students, ranked in the top 11% of their fourth grade peers (n=393). Dyads were from the same data set as in Study I. The dyads worked face-to-face in a computer-supported, game-format learning environment. Problem-solving processes for 251 tasks at three difficulty levels taking place during 56 (30–45 minutes) lessons were video-taped and analysed. Baseline data for this study were 14 675 turns of transcribed verbal and nonverbal behaviours observed in four study dyads. The micro-level analysis illustrated how participants moved between different channels of communication (individual and interpersonal). The unit of analysis was a set of turns, referred to as an ‘episode’. The results indicated that socially shared metacognition and its function and focus, as well as the appearance of metacognitive experiences can be defined in a reliable way from a larger data set by independent coders. A comparison of the different difficulty levels of the problems suggested that in order to trigger socially shared metacognition in small groups, the problems should be more difficult, as opposed to moderately difficult or easy. Although socially shared metacognition was found in collaborative face-to-face problem solving among high-achieving student dyads, more research is needed in different contexts. This consideration created the basis of the research on socially shared metacognition in Studies III and IV. In Study III, the aim was to expand the research on SSMR from face-to-face mathematical problem solving in student dyads to inquiry-based science learning among small groups in an asynchronous computer-supported collaborative learning (CSCL) environment. The specific aims were to investigate SSMR’s evolvement and functions in a CSCL environment and to explore how SSMR emerges at different phases of the inquiry process. Finally, individual student participation in SSMR during the process was studied. An in-depth explanatory case study of one small group of four girls aged 12 years was carried out. The girls attended a class that has an entrance examination and conducts a language-enriched curriculum. The small group solved complex science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry during 22 lessons (á 45–minute). Students’ network discussion were recorded in written notes (N=640) which were used as study data. A set of notes, referred to here as a ‘thread’, was used as the unit of analysis. The inter-coder agreement was regarded as substantial. The results indicated that SSMR emerges in a small group’s asynchronous CSCL inquiry process in the science domain. Hence, the results of Study III were in line with the previous Study I and Study II and revealed that metacognition cannot be reduced to the individual level alone. The findings also confirm that SSMR should be examined as a process, since SSMR can evolve during different phases and that different SSMR threads overlapped and intertwined. Although the classification of SSMR’s functions was applicable in the context of CSCL in a small group, the dominant function was different in the asynchronous CSCL inquiry in the small group in a science activity than in mathematical word problem solving among student dyads (Study II). Further, the use of different analytical methods provided complementary findings about students’ participation in SSMR. The findings suggest that it is not enough to code just a single written note or simply to examine who has the largest number of notes in the SSMR thread but also to examine the connections between the notes. As the findings of the present study are based on an in-depth analysis of a single small group, further cases were examined in Study IV, as well as looking at the SSMR’s focus, which was also studied in a face-to-face context. In Study IV, the general aim was to investigate the emergence of SSMR with a larger data set from an asynchronous CSCL inquiry process in small student groups carrying out science activities. The specific aims were to study the emergence of SSMR in the different phases of the process, students’ participation in SSMR, and the relation of SSMR’s focus to the quality of outcomes, which was not explored in previous studies. The participants were 12-year-old students from the same class as in Study III. Five small groups consisting of four students and one of five students (N=25) were involved in the study. The small groups solved ill-defined science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry over a total period of 22 hours. Written notes (N=4088) detailed the network discussions of the small groups and these constituted the study data. With these notes, SSMR threads were explored. As in Study III, the thread was used as the unit of analysis. In total, 332 notes were classified as forming 41 SSMR threads. Inter-coder agreement was assessed by three coders in the different phases of the analysis and found to be reliable. Multiple methods of analysis were used. Results showed that SSMR emerged in all the asynchronous CSCL inquiry processes in the small groups. However, the findings did not reveal any significantly changing trend in the emergence of SSMR during the process. As a main trend, the number of notes included in SSMR threads differed significantly in different phases of the process and small groups differed from each other. Although student participation was seen as highly dispersed between the students, there were differences between students and small groups. Furthermore, the findings indicated that the amount of SSMR during the process or participation structure did not explain the differences in the quality of outcomes for the groups. Rather, when SSMRs were focused on understanding and procedural matters, it was associated with achieving high quality learning outcomes. In turn, when SSMRs were focused on incidental and procedural matters, it was associated with low level learning outcomes. Hence, the findings imply that the focus of any emerging SSMR is crucial to the quality of the learning outcomes. Moreover, the findings encourage the use of multiple research methods for studying SSMR. In total, the four studies convincingly indicate that a phenomenon of socially shared metacognitive regulation also exists. This means that it was possible to define the concept of SSMR theoretically, to investigate it methodologically and to validate it empirically in two different learning contexts across dyads and small groups. In-depth micro-level case analysis in Studies I and III showed the possibility to capture and analyse in detail SSMR during the collaborative process, while in Studies II and IV, the analysis validated the emergence of SSMR in larger data sets. Hence, validation was tested both between two environments and within the same environments with further cases. As a part of this dissertation, SSMR’s detailed functions and foci were revealed. Moreover, the findings showed the important role of observable metacognitive experiences as the starting point of SSMRs. It was apparent that problems dealt with by the groups should be rather difficult if SSMR is to be made clearly visible. Further, individual students’ participation was found to differ between students and groups. The multiple research methods employed revealed supplementary findings regarding SSMR. Finally, when SSMR was focused on understanding and procedural matters, this was seen to lead to higher quality learning outcomes. Socially shared metacognition regulation should therefore be taken into consideration in students’ collaborative learning at school similarly to how an individual’s metacognition is taken into account in individual learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reduced capacity for executive cognitive function and for the autonomic control of cardiac responsivity are both concomitants of the aging process. These may be linked through their mutual dependence on medial prefrontal function, but the specifics ofthat linkage have not been well explored. Executive functions associated with medial prefrontal cortex involve various aspects ofperformance monitoring, whereas centrally mediated autonomic functions can be observed as heart rate variability (HRV), i.e., variability in the length of intervals between heart beats. The focus for this thesis was to examine the degree to which the capacity for phasic autonomic adjustments to heart rate relates to performance monitoring in younger and older adults, using measures of electrocortical and autonomic activity. Behavioural performance and attention allocation during two age-sensitive tasks could be predicted by various aspects of autonomic control. For young adults, greater influence of the parasympathetic system on HRV was beneficial for learning unfamiliar maze paths; for older adults, greater sympathetic influence was detrimental to these functions. Further, these relationships were primarily evoked when the task required the construction and use of internalized representations of mazes rather than passive responses to feedback. When memory for source was required, older adults made three times as many source errors as young adults. However, greater parasympathetic influence on HRV in the older group was conducive to avoiding source errors and to reduced electrocortical responses to irrelevant information. Higher sympathetic predominance, in contrast, was associated with higher rates of source error and greater electrocortical responses tq non-target information in both groups. These relations were not seen for 11 errors associated with a speeded perceptual task, irrespective of its difficulty level. Overall, autonomic modulation of cardiac activity was associated with higher levels of performance monitoring, but differentially across tasks and age groups. With respect to age, those older adults who had maintained higher levels of autonomic cardiac regulation appeared to have also maintained higher levels of executive control over task performance.