917 resultados para Molecular mechanical modelling


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In molecular mechanics simulations of biological systems, the solvation water is typically represented by a default water model which is an integral part of the force field. Indeed, protein nonbonding parameters are chosen in order to obtain a balance between water-water and protein-water interactions and hence a reliable description of protein solvation. However, less attention has been paid to the question of whether the water model provides a reliable description of the water properties under the chosen simulation conditions, for which more accurate water models often exist. Here we consider the case of the CHARMM protein force field, which was parametrized for use with a modified TIP3P model. Using quantum mechanical and molecular mechanical calculations, we investigate whether the CHARMM force field can be used with other water models: TIP4P and TIP5P. Solvation properties of N-methylacetamide (NMA), other small solute molecules, and a small protein are examined. The results indicate differences in binding energies and minimum energy geometries, especially for TIP5P, but the overall description of solvation is found to be similar for all models tested. The results provide an indication that molecular mechanics simulations with the CHARMM force field can be performed with water models other than TIP3P, thus enabling an improved description of the solvent water properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human parasitic diseases are the foremost threat to human health and welfare around the world. Trypanosomiasis is a very serious infectious disease against which the currently available drugs are limited and not effective. Therefore, there is an urgent need for new chemotherapeutic agents. One attractive drug target is the major cysteine protease from Trypanosoma cruzi, cruzain. In the present work, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies were conducted on a series of thiosemicarbazone and semicarbazone derivatives as inhibitors of cruzain. Molecular modeling studies were performed in order to identify the preferred binding mode of the inhibitors into the enzyme active site, and to generate structural alignments for the three-dimensional quantitative structure-activity relationship (3D QSAR) investigations. Statistically significant models were obtained (CoMFA. r(2) = 0.96 and q(2) = 0.78; CoMSIA, r(2) = 0.91 and q(2) = 0.73), indicating their predictive ability for untested compounds. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the information gathered from the 3D CoMFA and CoMSIA contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of cruzain inhibitors, and should be useful for the design of new structurally related analogs with improved potency. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Snake venom metalloproteases (SVMPs) embody zinc-dependent multidomain enzymes responsible for a relevant pathophysiology in envenomation. including local and systemic hemorrhage. The molecular features responsible for hemorrhagic potency of SVMPs have been associated with their multidomains structures which can target these proteins them to several receptors of different tissues and cellular types. BjussuMP-I. a SVMP isolated from the Bothrops jararacussu venom, has been characterized as a P-III hemorrhagic metalloprotease. The complete cDNA sequence of BjussuMP-I with 1641bp encodes open reading frames of 547 amino acid residues, which conserve the common domains of P-III high molecular weight hemorrhagic metalloproteases: (i) pre-pro-peptide, (ii) metalloprotease, (iii) disintegrin-like and (iv) rich cysteine domain. BjussuMP-I induced lyses in fibrin clots and inhibited collagen- and ADP-induced platelet aggregation. We are reporting, for the first time, the primary structure of an RGD-P-III class snake venom metalloprotease. A phylogenetic analysis of the BjussuMP-1 metalloprotease/catalytic domain was performed to get new insights into the molecular evolution of the metalloproteases. A theoretical molecular model of this domain was built through folding recognition (threading) techniques and refined by molecular dynamics simulation. Then, the final BjussuMP-I catalytic domain model was compared to other SVMPs and Reprolysin family proteins in order to identify eventual structural differences, which could help to understand the biochemical activities of these enzymes. The presence of large hydrophobic areas and some conserved surface charge-positive residues were identified as important features of the SVMPs and other metalloproteases. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thermoset epoxy resin EPON 862, coupled with the DETDA hardening agent, are utilized as the polymer matrix component in many graphite (carbon fiber) composites. Because it is difficult to experimentally characterize the interfacial region, computational molecular modeling is a necessary tool for understanding the influence of the interfacial molecular structure on bulk-level material properties. The purpose of this research is to investigate the many possible variables that may influence the interfacial structure and the effect they will have on the mechanical behavior of the bulk level composite. Molecular models are established for EPON 862-DETDA polymer in the presence of a graphite surface. Material characteristics such as polymer mass-density, residual stresses, and molecular potential energy are investigated near the polymer/fiber interface. Because the exact degree of crosslinking in these thermoset systems is not known, many different crosslink densities (degrees of curing) are investigated. It is determined that a region exists near the carbon fiber surface in which the polymer mass density is different than that of the bulk mass density. These surface effects extend ~10 Å into the polymer from the center of the outermost graphite layer. Early simulations predict polymer residual stress levels to be higher near the graphite surface. It is also seen that the molecular potential energy in polymer atoms decreases with increasing crosslink density. New models are then established in order to investigate the interface between EPON 862-DETDA polymer and graphene nanoplatelets (GNPs) of various atomic thicknesses. Mechanical properties are extracted from the models using Molecular Dynamics techniques. These properties are then implemented into micromechanics software that utilizes the generalized method of cells to create representations of macro-scale composites. Micromechanics models are created representing GNP doped epoxy with varying number of graphene layers and interfacial polymer crosslink densities. The initial micromechanics results for the GNP doped epoxy are then taken to represent the matrix component and are re-run through the micromechanics software with the addition of a carbon fiber to simulate a GNP doped epoxy/carbon fiber composite. Micromechanics results agree well with experimental data, and indicate GNPs of 1 to 2 atomic layers to be highly favorable. The effect of oxygen bonded to the surface of the GNPs is lastly investigated. Molecular Models are created for systems with varying graphene atomic thickness, along with different amounts of oxygen species attached to them. Models are created for graphene containing hydroxyl groups only, epoxide groups only, and a combination of epoxide and hydroxyl groups. Results show models of oxidized graphene to decrease in both tensile and shear modulus. Attaching only epoxide groups gives the best results for mechanical properties, though pristine graphene is still favored.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CoMFA and CoMSIA analysis were utilized in this investigation to define the important interacting regions in paclitaxel/tubulin binding site and to develop selective paclitaxel-like active compounds. The starting geometry of paclitaxel analogs was taken from the crystal structure of docetaxel. A total of 28 derivatives of paclitaxel were divided into two groups—a training set comprising of 19 compounds and a test set comprising of nine compounds. They were constructed and geometrically optimized using SYBYL v6.6. CoMFA studies provided a good predictability (q2 = 0.699, r2 = 0.991, PC = 6, S.E.E. = 0.343 and F = 185.910). They showed the steric and electrostatic properties as the major interacting forces whilst the lipophilic property contribution was a minor factor for recognition forces of the binding site. These results were in agreement with the experimental data of the binding activities of these compounds. Five fields in CoMSIA analysis (steric, electrostatic, hydrophobic, hydrogen-bond acceptor and donor properties) were considered contributors in the ligand–receptor interactions. The results obtained from the CoMSIA studies were: q2 = 0.535, r2 = 0.983, PC = 5, S.E.E. = 0.452 and F = 127.884. The data obtained from both CoMFA and CoMSIA studies were interpreted with respect to the paclitaxel/tubulin binding site. This intuitively suggested where the most significant anchoring points for binding affinity are located. This information could be used for the development of new compounds having paclitaxel-like activity with new chemical entities to overcome the existing pharmaceutical barriers and the economical problem associated with the synthesis of the paclitaxel analogs. These will boost the wide use of this useful class of compounds, i.e. in brain tumors as the most of the present active compounds have poor blood–brain barrier crossing ratios and also, various tubulin isotypes has shown resistance to taxanes and other antimitotic agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1,2-Enedioic systems, being sterically perturbed from planarity do not show the effect of the extended conjugation expected of a (formal) trienic entity. In the absence of a model which approximates to a uniplanar situation, the strategy of replacing an ester group in the enedioates by a cyano (for which less stringent steric demand may be presumed) and noting the correction concomitant to this replacement was adopted to arrive at a notional figure for the position of maximal absorption in the planar enedioates. From this the conclusion, subject to substantiation by molecular mechanical or quantum chemical calculations, was drawn that even the E-isomeric and comparatively less substituted enedioates are highly sterically perturbed. An alternative to an earlier explanation of the bathochromic shift of absorption maxima encountered in the 5-cyclic ene-ester and ene-nitrile, relative to the 6-cyclic analogues (observed also with the enedioates and cyanovinyl ester systems), seen later to have been based on unwarranted premises, has been advanced. A comment on the absorption characteristics of enedioic anhydrides has been appended.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The polar headgroup of dipalmitoylphosphatidylcholine (DPPC) molecule both in gas phase and aqueous Solution is investigated by the hybrid quantum mechanical/molecular mechanical (QM/MM) method, in which the polar head of DPPC molecule and the bound water molecules are treated with density functional theory (DFT), while the apolar hydrocarbon chain of DPPC molecule is treated with MM method. It is demonstrated that the hybrid QM/MM method is both accurate and efficient to describe the conformations of DPPC headgroup. Folded structures of headgroup are found in gas phase calculations. In this work, both monohydration and polyhydration phenomena are investigated. In monohydration, different water association sites are studied. Both the hydration energy and the quantum properties of DPPC and water molecules are calculated at the DFT level of theory after geometry optimization. The binding force of monohydration is estimated by using the scan method. In polyhydration, more extended conformations are found and hydration energies in different polyhydration styles are estimated. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flare tips are essential for safety. Maintenance is difficult and costly. Flare tips are subjected to high combustion temperatures, thermal cycling, oxidation and marine corrosion. Following a number of flare tip failures an in depth study by Imperial College was carried out into the failure of a flare tip from a UK platform, looking for service life improvement. Materials selection and design solutions were considered. The study considered alternative materials and concluded that materials selection was the smaller part of the answer; design changes can double service life. This study used failure investigation, high temperature experimental and thermo-mechanical modelling analysis. The modelling process simulated two common flaring conditions and correctly predicted the observed failure of initiation and crack propagation from holes used to bolt on flame stabilizing plates to the top of the flare. The calculated thermal stress and strains enabled the low cycle fatigue life and minimum creep life to be predicted. It was concluded that service life could be improved by replacing Incoloy alloy 800HT (UNS N08800) with Inconel alloy 625 (UNS N06625), an alloy with attractive mechanical properties and improved high temperature corrosion resistance. Repositioning or eliminating bolt holes can double service life. Copyright 2008, Society of Petroleum Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The simulation of complex chemical systems often requires a multi-level description, in which a region of special interest is treated using a computationally expensive quantum mechanical (QM) model while its environment is described by a faster, simpler molecular mechanical (MM) model. Furthermore, studying dynamic effects in solvated systems or bio-molecules requires a variable definition of the two regions, so that atoms or molecules can be dynamically re-assigned between the QM and MM descriptions during the course of the simulation. Such reassignments pose a problem for traditional QM/MM schemes by exacerbating the errors that stem from switching the model at the boundary. Here we show that stable, long adaptive simulations can be carried out using density functional theory with the BLYP exchange-correlation functional for the QM model and a flexible TIP3P force field for the MM model without requiring adjustments of either. Using a primary benchmark system of pure water, we investigate the convergence of the liquid structure with the size of the QM region, and demonstrate that by using a sufficiently large QM region (with radius 6 Å) it is possible to obtain radial and angular distributions that, in the QM region, match the results of fully quantum mechanical calculations with periodic boundary conditions, and, after a smooth transition, also agree with fully MM calculations in the MM region. The key ingredient is the accurate evaluation of forces in the QM subsystem which we achieve by including an extended buffer region in the QM calculations. We also show that our buffered-force QM/MM scheme is transferable by simulating the solvated Cl(-) ion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular orbital calculations were carried out on a set of 28 non-imidazole H(3) antihistamine compounds using the Hartree-Fock method in order to investigate the possible relationships between electronic structural properties and binding affinity for H3 receptors (pK(i)). It was observed that the frontier effective-for-reaction molecular orbital (FERMO) energies were better correlated with pK(i) values than highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. Exploratory data analysis through hierarchical cluster (HCA) and principal component analysis (PCA) showed a separation of the compounds in two sets, one grouping the molecules with high pK(i) values, the other gathering low pK(i) value compounds. This separation was obtained with the use of the following descriptors: FERMO energies (epsilon(FERMO)), charges derived from the electrostatic potential on the nitrogen atom (N(1)), electronic density indexes for FERMO on the N(1) atom (Sigma((FERMO))c(i)(2)). and electrophilicity (omega`). These electronic descriptors were used to construct a quantitative structure-activity relationship (QSAR) model through the partial least-squares (PLS) method with three principal components. This model generated Q(2) = 0.88 and R(2) = 0.927 values obtained from a training set and external validation of 23 and 5 molecules, respectively. After the analysis of the PLS regression equation and the values for the selected electronic descriptors, it is suggested that high values of FERMO energies and of Sigma((FERMO))c(i)(2), together with low values of electrophilicity and pronounced negative charges on N(1) appear as desirable properties for the conception of new molecules which might have high binding affinity. 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To explore three possible binding sites of trypanothione and glutathione reductase, namely, the active, the dimer interface and the coenzyme NADPH binding site, a series of eight compounds, nitrofurans and nitrothiophenes derivatives, were docked, using their crystallographic and modeled conformations. Docking results showed that, for both families and both enzymes, compounds are more likely to bind in the interface site, even though there is some probability of binding in the active site. These studies are in agreement with experimental data, which suggest that these class of compounds can act either as uncompetitive or mixed type inhibitors, and also with the finding that there is an alpha-helix which connects the active with the interface site, thus allowing charge transference between them. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a continuous search for theoretical methods that are able to describe the effects of the liquid environment on molecular systems. Different methods emphasize different aspects, and the treatment of both the local and bulk properties is still a great challenge. In this work, the electronic properties of a water molecule in liquid environment is studied by performing a relaxation of the geometry and electronic distribution using the free energy gradient method. This is made using a series of steps in each of which we run a purely molecular mechanical (MM) Monte Carlo Metropolis simulation of liquid water and subsequently perform a quantum mechanical/molecular mechanical (QM/MM) calculation of the ensemble averages of the charge distribution, atomic forces, and second derivatives. The MP2/aug-cc-pV5Z level is used to describe the electronic properties of the QM water. B3LYP with specially designed basis functions are used for the magnetic properties. Very good agreement is found for the local properties of water, such as geometry, vibrational frequencies, dipole moment, dipole polarizability, chemical shift, and spin-spin coupling constants. The very good performance of the free energy method combined with a QM/MM approach along with the possible limitations are briefly discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is a potential biocatalyst for use in asymmetric synthesis. The mechanisms of CPO catalysis are therefore of interest. The halogenation reaction, one of several chemical reactions that CPO catalyzes, is not fully understood and is the subject of this dissertation. The mechanism by which CPO catalyzes halogenation is disputed. It has been postulated that halogenation of substrates occurs at the active site. Alternatively, it has been proposed that hypochlorous acid, produced at the active site via oxidation of chloride, is released prior to reaction, so that halogenation occurs in solution. The free-solution mechanism is supported by the observation that halogenation of most substrates often occurs non-stereospecifically. On the other hand, the enzyme-bound mechanism is supported by the observation that some large substrates undergo halogenation stereospecifically. The major purpose of this research is to compare chlorination of the substrate β-cyclopentanedione in the two environments. One study was of the reaction with limited hydration because such a level of hydration is typical of the active site. For this work, a purely quantum mechanical approach was used. To model the aqueous environment, the limited hydration environment approach is not appropriate. Instead, reaction precursor conformations were obtained from a solvated molecular dynamics simulation, and reaction of potentially reactive molecular encounters was modeled with a hybrid quantum mechanical/molecular mechanical approach. Extensive work developing parameters for small molecules was pre-requisite for the molecular dynamics simulation. It is observed that a limited and optimized (active-site-like) hydration environment leads to a lower energetic barrier than the fully solvated model representative of the aqueous environment at room temperature, suggesting that the stable water network near the active site is likely to facilitate the chlorination mechanism. The influence of the solvent environment on the reaction barrier is critical. It is observed that stabilization of the catalytic water by other solvent molecules lowers the barrier for keto-enol tautomerization. Placement of water molecules is more important than the number of water molecules in such studies. The fully-solvated model demonstrates that reaction proceeds when the instantaneous dynamical water environment is close to optimal for stabilizing the transition state.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The mechanical vibration properties of single actin filaments from 50 to 288 nm are investigated by the molecular dynamics simulation in this study. The natural frequencies obtained from the molecular simulations agree with those obtained from the analytical solution of the equivalent Euler–Bernoulli beam model. Through the convergence study of the mechanical properties with respect to the filament length, it was found that the Euler–Bernoulli beam model can only be reliably used when the single actin filament is of the order of hundreds of nanometre scale. This molecular investigation not only provides the evidence for the use of the continuum beam model in characterising the mechanical properties of single actin filaments, but also clarifies the criteria for the effective use of the Euler–Bernoulli beam model.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The actin microfilament plays a critical role in many cellular processes including embryonic development, wound healing, immune response, and tissue development. It is commonly organized in the form of networks whose mechanical properties change with changes in their architecture due to cell evolution processes. This paper presents a new nonlinear continuum mechanics model of single filamentous actin (F-actin) that is based on nanoscale molecular simulations. Following this continuum model of the single F-actin, mechanical properties of differently architected lamellipodia are studied. The results provide insight that can contribute to the understanding of the cell edge motions of living cells.