994 resultados para Molecular layer doping
Resumo:
MAP1a is a microtubule-associated protein with an apparent molecular weight of 360 kDa that is found in the axonal and dendritic processes of neurons. Two monoclonal anti-MAP1a antibodies anti-A and anti-BW6, revealed different epitope distributions in the adult mouse cerebellum. Anti-A stained Purkinje and granule cells uniformly throughout the cerebellum. In contrast, anti-BW6 selectively stained the dendriites of a subset of Purkinje cells, revealing parasagittal bands of immunoreactivity in the molecular layer. The compartmentation of the BW6 epitope was compared to the Purkine cells as revealed by immunostaining with anti-zebrin II, a well known antigen expressed selectively by bands of Purkinje cells. The anti-BW6 staining pattern was complementary to the zebrin II bands, the zebrin II- Purkinjke cells having BW6+ dendrites. These results demonstrate that MAP1a is present in two forms in the mouse cerebellum, one of which is segregated into parasagittal bands. This may indicate a unique MAP1a isoform or may reflect differences in the metabolic states of Purkinje cell classes, and regional differences in their functions.
Resumo:
The release of transmitters from glia influences synaptic functions. The modalities and physiological functions of glial release are poorly understood. Here we show that glutamate exocytosis from astrocytes of the rat hippocampal dentate molecular layer enhances synaptic strength at excitatory synapses between perforant path afferents and granule cells. The effect is mediated by ifenprodil-sensitive NMDA ionotropic glutamate receptors and involves an increase of transmitter release at the synapse. Correspondingly, we identify NMDA receptor 2B subunits on the extrasynaptic portion of excitatory nerve terminals. The receptor distribution is spatially related to glutamate-containing synaptic-like microvesicles in the apposed astrocytic processes. This glial regulatory pathway is endogenously activated by neuronal activity-dependent stimulation of purinergic P2Y1 receptors on the astrocytes. Thus, we provide the first combined functional and ultrastructural evidence for a physiological control of synaptic activity via exocytosis of glutamate from astrocytes.
Resumo:
The last decade has presented studies providing evidence for astrocytic exocytosis of glutamate potentiating nerve signals. To make further investigations into this astrocytic attribute we investigated the localization of the vesicular glutamate transporter 1 (VGLUT1) in small processes of astrocytes close to glutamatergic terminals in frontal cortex, striatum, molecular layer of hippocampus and stratum radiatum of hippocampus. According to the importance of VGLUT1 in glutamate exocytosis the presence of VGLUT1 in astrocytic processes indicates the ability to exocytose glutamate. METHODS: For qualitative analysis we used immunoflourescence histochemistry. Sections from rat frontal cortex, striatum, molecular layer of hippocampus and stratum radiatum of hippocampus were labeled with antibodies against glutamine synthetase (an astrocytic marker) and VGLUT1. Z-stacks of 4.5-5 lm obtained by confocal microscopy from each section were deconvolved and 3D reconstructed in Amira. Small astrocytic processes were analysed for the presence of VGLUT1 inside the processes. The quantitative analysis was done by immunogold labeling. Ultrathin sections from each brain region were labeled for GLT (an astrocytic marker) and VGLUT1. Pictures obtained by electron microscopy were analysed and the point density (gold particles/nm2) for VGLUT1 in astrocytic processes was measured. RESULTS: Using confocal 3D reconstructions we were qualitatively able to identify VGLUT1 within small processes of astrocytes in all four brain regions. Reflecting our qualitative findings the electron microscopical immunogold quantifications showed a significant density of gold particles signaling VGLUT1 in astrocytic processes in all four brain regions. CONCLUSION: We extend the results of previous studies on glutamate release from astrocytes, which have focused on the hippocampus, proposing that astrocytic exocytosis of glutamate is a global phenomenon in the brain.
Resumo:
The expression of the 240 ConA-binding glycoprotein (240 kDa), a marker of synaptic junctions isolated from the rat cerebellum, was studied by immunocytochemical techniques in forebrain and cerebellum from rat and chicken, and in chick dorsal root ganglia. Parallel studies were carried out either on tissue sections or in dissociated cell cultures. In all cases non neuronal cells were not immunostained. The tissue sections of cerebellum from rat and chick exhibited 240 kDa glycoprotein immunoreactivity, especially in the molecular layer, while the forebrain sections from rat and chick did not show any significant immunostaining. In contrast, in dissociated forebrain cell cultures, all neuronal cells expressed 240 kDa glycoprotein immunoreactivity, while glial cells remained totally unlabelled. In tissue sections of dorsal root ganglion (DRG), sensory neurons expressed the 240 kDa only after the embryonic day (E 10). A large number of small neurons in the dorsomedial part of DRG were immunostained with 240 kDa glycoprotein antiserum, whereas only a small number of neurons in the ventrolateral part of the ganglia displayed 240 kDa immunoreactivity. In dissociated DRG cells cultures (mixed or neuron-enriched DRG cell cultures) all the neuronal perikarya but not their processes were stained. These studies indicate that 240 kDa glycoprotein expression is completely modified in cultures of neurons of CNS or PNS since the antigen becomes synthetized in high amount by all cells independent of synapse formation. This demonstrates that the expression of 240 kDa is controlled by the cell environment.
Resumo:
Santiago Ramón y Cajal developed a great body of scientific research during the last decade of 19th century, mainly between 1888 and 1892, when he published more than 30 manuscripts. The neuronal theory, the structure of dendrites and spines, and fine microscopic descriptions of numerous neural circuits are among these studies. In addition, numerous cell types (neuronal and glial) were described by Ramón y Cajal during this time using this 'reazione nera' or Golgi method. Among these neurons were the special cells of the molecular layer of the neocortex. These cells were also termed Cajal cells or Retzius cells by other colleagues. Today these cells are known as Cajal-Retzius cells. From the earliest description, several biological aspects of these fascinating cells have been analyzed (e.g., cell morphology, physiological properties, origin and cellular fate, putative function during cortical development, etc). In this review we will summarize in a temporal basis the emerging knowledge concerning this cell population with specific attention the pioneer studies of Santiago Ramón y Cajal.
Resumo:
Introduction: The coexistence of different molecular types of classical protease-resistant prion protein in the same individual have been described, however, the simultaneous finding of these with the recently described protease-sensitive variant or variably protease-sensitive prionopathy has, to the best of our knowledge, not yet been reported. Case presentation: A 74-year-old Caucasian woman showed a sporadic Creutzfeldt-Jakob disease clinical phenotype with reactive depression, followed by cognitive impairment, akinetic-rigid Parkinsonism with pseudobulbar syndrome and gait impairment with motor apraxia, visuospatial disorientation, and evident frontal dysfunction features such as grasping, palmomental reflex and brisk perioral reflexes. She died at age 77. Neuropathological findings showed: spongiform change in the patient"s cerebral cortex, striatum, thalamus and molecular layer of the cerebellum with proteinase K-sensitive synaptic-like, dot-like or target-like prion protein deposition in the cortex, thalamus and striatum; proteinase K-resistant prion protein in the same regions; and elongated plaque-like proteinase K-resistant prion protein in the molecular layer of the cerebellum. Molecular analysis of prion protein after proteinase K digestion revealed decreased signal intensity in immunoblot, a ladder-like protein pattern, and a 71% reduction of PrPSc signal relative to non-digested material. Her cerebellum showed a 2A prion protein type largely resistant to proteinase K. Genotype of polymorphism at codon 129 was valine homozygous. Conclusion: Molecular typing of prion protein along with clinical and neuropathological data revealed, to the best of our knowledge, the first case of the coexistence of different protease-sensitive prion proteins in the same patient in a rare case that did not fulfill the current clinical diagnostic criteria for either probable or possible sporadic Creutzfeldt-Jakob disease. This highlights the importance of molecular analyses of several brain regions in order to correctly diagnose rare and atypical prionopathies
Resumo:
Myosin Va functions as a processive, actin-based motor molecule highly enriched in the nervous system, which transports and/or tethers organelles, vesicles, and mRNA and protein translation machinery. Mutation of myosin Va leads to Griscelli disease that is associated with severe neurological deficits and a short life span. Despite playing a critical role in development, the expression of myosin Va in the central nervous system throughout the human life span has not been reported. To address this issue, the cerebellar expression of myosin Va from newborns to elderly humans was studied by immunohistochemistry using an affinity-purified anti-myosin Va antibody. Myosin Va was expressed at all ages from the 10th postnatal day to the 98th year of life, in molecular, Purkinje and granular cerebellar layers. Cerebellar myosin Va expression did not differ essentially in localization or intensity from childhood to old age, except during the postnatal developmental period. Structures resembling granules and climbing fibers in Purkinje cells were deeply stained. In dentate neurons, long processes were deeply stained by anti-myosin Va, as were punctate nuclear structures. During the first postnatal year, myosin Va was differentially expressed in the external granular layer (EGL). In the EGL, proliferating prospective granule cells were not stained by anti-myosin Va antibody. In contrast, premigratory granule cells in the EGL stained moderately. Granule cells exhibiting a migratory profile in the molecular layer were also moderately stained. In conclusion, neuronal myosin Va is developmentally regulated, and appears to be required for cerebellar function from early postnatal life to senescence.
Resumo:
The use of high-melting fibres as linear nuclei for quiescent polymeric melts is instrumental in providing the superior mechanical properties of polymeric self-composites. It also has inherent advantages in the elucidation of fundamental aspects of polymeric crystallization and self-organization, not least in allowing systematic microscopic studies of polymeric crystallization from nucleation through to the growth interface. This has demonstrated explicitly that lamellae develop in two distinct ways, for slower and faster growth, depending on whether fold packing has or has not time to order before the next molecular layer is added with only the former leading to banded growth in linear polyethylene. Other gains in understanding concern cellulation and morphological instability, internuclear interference, isothermal lamellar thickening and banded growth being a consequence of the partial relief of initial surface stress. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Poucos estudos tem se dedicado a investigar em detalhe possíveis relações entre o declínio cognitivo associado ao envelhecimento e a plasticidade astroglial no hipocampo. No presente trabalho investigamos possíveis relações entre o desempenho em testes de memória de reconhecimento de objeto e o numero e a distribuição laminar dos astrocitos em CA3 em modelo murino. Para isso empregamos camundongos fêmeas adultas da linhagem C57Bl6 de 6 (n = 7) e 20 meses (n = 5) de idade, mantidos em gaiolas padrão desde o nascimento,comparando seus desempenhos em tarefas hipocampo-dependentes para reconhecimento da forma, do lugar e do momento em que os objetos selecionados lhes foram expostos. Apos os testes comportamentais todos os animais foram per fundidos com fixadores aldeidicos e tiveram seus cérebros removidos e processados para imunomarcação empregando anticorpo seletivo para detecção da proteína acida fibrilar dos astrocitos (GFAP). Para evitar possível viés amostral empregamos o fracionador óptico, um método estereológico que não e afetado pelo processamento histologico. Os resultados nos testes comportamentais isolados e integrados (memória episódica) revelaram que o envelhecimento compromete significativamente (teste T bi-caudal, p<0.05) o reconhecimento da forma, do lugar e do momento em que objetos selecionados são apresentados aos sujeitos. As análises estereologicas das estimativas do numero de astrocítos revelaram que o envelhecimento afetou a distribuicao laminar com aumento na proporção relativa daqueles na camada piramidal de CA3 dorsal e ventral e reducao no lacunoso molecular de CA3 dorsal. O número total de astrocitos em consequência apresentou significativa reorganização na distribuição laminar em função da idade com os animais senis mostrando redução no percentual daqueles localizados na camada oriens. Nenhuma diferenca significativa foi encontrada entre os volumes das camadas de CA3 sugerindo que as mudanças induzidas pelo envelhecimento alteram diretamente a plasticidade astroglial em CA3. Finalmente os estudos de correlação linear entre as estimativas do numero dos astrocitos da camada piramidal e os testes comportamentais demonstraram correlação inversa com os piores desempenhos estando associados a um maior número de astrocitos naquela camada. Evidencias diretas adicionais dessa correlação com os astrocitos alterados em CA3 e possíveis mecanismos moleculares para explicar o declinio cognitivo associado ao envelhecimento permanecem por ser investigados.
Memória espacial e morfometria tridimensional da micróglia de CA1 e do giro denteado do Cebus apella
Resumo:
O presente trabalho tem o intuito de Investigar possíveis correlações entre a morfologia da micróglia do hipocampo e giro denteado e o desempenho cognitivo individual em teste de memória espacial no Cebus apella. Devido ao bom desempenho do Cebus apella em tarefas cognitivas hipocampo-dependentes, utilizou-se testes selecionados da Bateria Cambridge de Testes Neuropsicológicos (CANTAB) utilizada previamente com sucesso tanto em primatas do Velho Mundo quanto em humanos. Empregou-se o teste motor de adaptação a tela para checar a adaptação dos indivíduos à tela sensível ao toque e o teste de aprendizado pareado (TAP) para avaliar aprendizado e memória espacial. Para o estudo da correlação entre o desempenho individual no TAP da bateria CANTAB e a morfologia da micróglia, foi necessário reconstruir e analisar parâmetros morfométricos selecionados a partir de micróglias reconstruídas dos terços médio e externo da camada molecular do giro denteado e do lacunosum molecular de CA1, empregando microscopia tridimensional. A definição dos limites da formação hipocampal foi feita empregando-se critérios arquitetônicos previamente definidos. Para imunomarcação seletiva de micróglias foi utilizado o anticorpo policlonal (anti-Iba1) dirigido contra a proteína adaptadora ligante de cálcio ionizado Iba-1. A partir de procedimentos de estatística multivariada identificou-se a ocorrência de agrupamentos microgliais baseados em parâmetros morfométricos que permitiram a distinção de pelo menos dois grandes grupos microgliais em todos os indivíduos. Os resultados comportamentais expressos em taxa de aprendizado e alguns dos parâmetros morfométricos da micróglia dos terços externo e médio da camada molecular do giro denteado revelaram significativas correlações, lineares e não lineares. Em contraste, nenhuma correlação dessa natureza foi encontrada no lacunosum molecular de CA1. Nós sugerimos baseado no presente e em trabalhos anteriores que a correlação entre desempenho cognitivo e a complexidade estrutural da glia não é um atributo exclusivo dos astrócitos e que a morfologia da micróglia da camada molecular do giro denteado pode estar associada ainda que de forma indireta ao desempenho individual em testes de memória espacial.
Resumo:
In the central nervous system, zinc is released along with glutamate during neurotransmission and, in excess, can promote neuronal death. Experimental studies have shown that metallothioneins I/II (MT-I/II), which chelate free zinc, can affect seizures and reduce neuronal death after status epilepticus. Our aim was to evaluate the expression of MT-I/II in the hippocampus of patients with temporal lobe epilepsy (TLE). Hippocampi from patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) and patients with TLE associated with tumor or dysplasia (TLE-TD) were evaluated for expression of MT-I/II, for the vesicular zinc levels, and for neuronal, astroglial, and microglial populations. Compared to control cases, MTLE group displayed widespread increase in MT-I/II expression, astrogliosis, microgliosis and reduced neuronal population. In TLE-TD, the same changes were observed, except that were mainly confined to fascia dentata. Increased vesicular zinc was observed only in the inner molecular layer of MTLE patients, when compared to control cases. Correlation and linear regression analyses indicated an association between increased MT-I/II and increased astrogliosis in TLE. MT-I/II levels did not correlate with any clinical variables, but MTLE patients with secondary generalized seizures (SGS) had less MT-I/II than MTLE patients without SGS. In conclusion, MT-I/II expression was increased in hippocampi from TLE patients and our data suggest that it is associated with astrogliosis and may be associated with different seizure spread patterns.
Resumo:
The plastic brain responses generated by the training with acrobatic exercise (AE) and with treadmill exercise (TE) may be different. We evaluated the protein expression of synapsin I (SYS), synaptophysin (SYP), microtubule-associated protein 2 (MAP2) and neurofilaments (NF) by immunohistochemistry and Western blotting in the motor cortex, striatum and cerebellum of rats subjected to TE and AE. Young adult male Wistar rats were divided into 3 groups: sedentary (Sed) (n=15), TE (n=20) and AE (n=20). The rats were trained 3 days/week for 4 weeks on a treadmill at 0.6 km/h, 40 min/day (TE), or moved through a circuit of obstacles 5 times/day (AE). The rats from the TE group exhibited a significant increase of SYS and SYP in the motor cortex, of NF68, SYS and SYP in the striatum, and of MAP2, NF and SYS in the cerebellum, whereas NF was decreased in the motor cortex and the molecular layer of the cerebellar cortex. On the other hand, the rats from the AE group showed a significant increase of MAP2 and SYP in the motor cortex, of all four proteins in the striatum, and of SYS in the cerebellum. In conclusion, AE induced changes in the expression of synaptic and structural proteins mainly in the motor cortex and striatum, which may underlie part of the learning of complex motor tasks. TE, on the other hand, promoted more robust changes of structural proteins in all three regions, especially in the cerebellum, which is involved in learned and automatic tasks. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Computer simulations of external current stimulations of dentate gyrus granule cells of rats with Status Epilepticus induced by pilocarpine and control rats were used to evaluate whether morphological differences alone between these cells have an impact on their electrophysiological behavior. The cell models were constructed using morphological information from tridimensional reconstructions with Neurolucida software. To evaluate the effect of morphology differences alone, ion channel conductances, densities and distributions over the dendritic trees of dentate gyrus granule cells were the same for all models. External simulated currents were injected in randomly chosen dendrites belonging to one of three different areas of dentate gyrus granule cell molecular layer: inner molecular layer, medial molecular layer and outer molecular layer. Somatic membrane potentials were recorded to determine firing frequencies and inter-spike intervals. The results show that morphologically altered granule cells from pilocarpine-induced epileptic rats are less excitable than control cells, especially when they are stimulated in the inner molecular layer, which is the target area for mossy fibers that sprout after pilocarpine-induced cell degeneration. This suggests that morphological alterations may act as a protective mechanism to allow dentate gyrus granule cells to cope with the increase of stimulation caused by mossy fiber sprouting.
Resumo:
Aging is a physiological process characterized by a progressive decline of the “cellular homeostatic reserve”, refereed as the capability to respond suitably to exogenous and endogenous stressful stimuli. Due to their high energetic requests and post-mitotic nature, neurons are peculiarly susceptible to this phenomenon. However, the aged brain maintains a certain level of adaptive capacities and if properly stimulated may warrant a considerable functional recovery. Aim of the present research was to verify the plastic potentialities of the aging brain of rats subjected to two kind of exogenous stimuli: A) the replacement of the standard diet with a ketogenic regimen (the change forces the brain to use ketone bodies (KB) in alternative to glucose to satisfy the energetic needs) and B) a behavioural task able to induce the formation of inhibitory avoidance memory. A) Fifteen male Wistar rats of 19 months of age were divided into three groups (average body weight pair-matched), and fed for 8 weeks with different dietary regimens: i) diet containing 10% medium chain triglycerides (MCT); ii) diet containing 20% MCT; iii) standard commercial chow. Five young (5 months of age) and five old (26-27 months of age) animals fed with the standard diet were used as further controls. The following morphological parameters reflecting synaptic plasticity were evaluated in the stratum moleculare of the hippocampal CA1 region (SM CA1), in the outer molecular layer of the hippocampal dentate gyrus (OML DG), and in the granule cell layer of the cerebellar cortex (GCL-CCx): average area (S), numeric density (Nvs), and surface density (Sv) of synapses, and average volume (V), numeric density (Nvm), and volume density (Vv) of synaptic mitochondria. Moreover, succinic dehydrogenase (SDH) activity was cytochemically determined in Purkinje cells (PC) and V, Nvm, Vv, and cytochemical precipitate area/mitochondrial area (R) of SDH-positive mitochondria were evaluated. In SM CA1, MCT-KDs induced the early appearance of the morphological patterns typical of old animals: higher S and V, and lower Nvs and Nvm. On the contrary, in OML DG, Sv and Vv of MCT-KDs-fed rats were higher (as a result of higher Nvs and Nvm) vs. controls; these modifications are known to improve synaptic function and metabolic supply. The opposite effects of MCT-KDs might reflect the different susceptibility of these brain regions to the aging processes: OML DG is less vulnerable than SM CA1, and the reactivation of ketone bodies uptake and catabolism might occur more efficiently in this region, allowing the exploitation of their peculiar metabolic properties. In GCL-CCx, the results described a new scenario in comparison to that found in the hippocampal formation: 10%MCT-KD induced the early appearance of senescent patterns (decreased Nvs and Nvm; increased V), whereas 20%MCT-KD caused no changes. Since GCL-CCx is more vulnerable to age than DG, and less than CA1, these data further support the hypothesis that MCT-KDs effects in the aging brain critically depend on neuronal vulnerability to age, besides MCT percentage. Regarding PC, it was decided to evaluate only the metabolic effect of the dietetic regimen (20%MCT-KD) characterized by less side effects. KD counteracted age-related decrease in numeric density of SDH-positive mitochondria, and enhanced their energetic efficiency (R was significantly higher in MCT-KD-fed rats vs. all the controls). Since it is well known that Purkinje and dentate gyrus cells are less vulnerable to aging than CA1 neurons, these results corroborate our previous hypothesis. In conclusion, the A) experimental line provides the first evidence that morphological and functional parameters reflecting synaptic plasticity and mitochondrial metabolic competence may be modulated by MCT-KDs in the pre-senescent central nervous system, and that the effects may be heterogeneous in different brain regions. MCT-KDs seem to supply high energy metabolic intermediates and to be beneficial (“anti-aging”) for those neurons that maintain the capability to exploit them. This implies risks but also promising potentialities for the therapeutic use of these diets during aging B) Morphological parameters of synapses and synaptic mitochondria in SM CA1 were investigated in old (26-27 month-old) female Wistar rats following a single trial inhibitory avoidance task. In this memory protocol animals learn to avoid a dark compartment in which they received a mild, inescapable foot-shock. Rats were tested 3 and 6 or 9 hours after the training, divided into good and bad responders according to their performance (retention times above or below 100 s, respectively) and immediately sacrificed. Nvs, S, Sv, Nvm, V, and Vv were evaluated. In the good responder group, the numeric density of synapses and mitochondria was significantly higher and the average mitochondrial volume was significantly smaller 9 hours vs. 6 hours after the training. No significant differences were observed among bad responders. Thus, better performances in passive avoidance memory task are correlated with more efficient plastic remodeling of synaptic contacts and mitochondria in hippocampal CA1. These findings indicate that maintenance of synaptic plastic reactivity during aging is a critical requirement for preserving long-term memory consolidation.