996 resultados para Modular Group
Resumo:
A series of dinuclear (bipyridine)tricarbonylrhenium(I) and tris(bipyridine)ruthenium(II) complexes have been isolated and characterised, bridged by a flexible diamido ethylene glycol chain. A new stepwise synthetic pathway has been investigated to heterometallic complexes, with the rhenium(I) complexes exhibiting an unusual configuration and inequivalence of the metal centres potentially arising from a surprising hydrogen-bonding interaction between an Re–CO group and an amide proton in low-polarity solvents. This interaction appears to be broken by competing hydrogen-bonding species such as dihydrogen phosphate. This effect was not observed in the corresponding ruthenium(II) complexes, which showed very little interaction with anions. The photophysical characterisation shows that the inclusion of two ester/amide groups to the rhenium centre effectively quenches the fluorescence at room temperature. The ruthenium(II) complexes have considerably stronger fluorescence than the rhenium species, and are less affected by theinclusion of ester and amide groups to the 2,2'-bipyridine chelating group.
Resumo:
This study investigates the child (L1) acquisition of properties at the interfaces of morpho-syntax, syntax-semantics and syntax-pragmatics, by focusing on inflected infinitives in European Portuguese (EP). Three child groups were tested, 6–7-year-olds, 9–10-year-olds and 11–12-year-olds, as well as an adult control group. The data demonstrate that children as young as 6 have knowledge of the morpho-syntactic properties of inflected infinitives, although they seem at first glance to show partially insufficient knowledge of their syntax–semantic interface properties (i.e. non-obligatory control properties), differently from children aged 9 and older, who show clearer evidence of knowledge of both types of properties. However, in general, both morpho-syntactic and syntax–semantics interface properties are also accessible to 6–7-year-old children, although these children give preference to a range of interpretations partially different from the adults; in certain cases, they may not appeal to certain pragmatic inferences that permit additional interpretations to adults and older children. Crucially, our data demonstrate that EP children master the two types of properties of inflected infinitives years before Brazilian Portuguese children do (Pires and Rothman, 2009a and Pires and Rothman, 2009b), reasons for and implications of which we discuss in detail.
Resumo:
This study investigates the child (L1) acquisition of properties at the interfaces of morphosyntax, syntax-semantics and syntax-pragmatics, by focusing on inflected infinitives in European Portuguese (EP). Three child groups were tested, 6–7-year-olds, 9–10-year-olds and 11–12-year-olds, as well as an adult control group. The data demonstrate that children as young as 6 have knowledge of the morpho-syntactic properties of inflected infinitives, although they seem at first glance to show partially insufficient knowledge of their syntax–semantic interface properties (i.e. non-obligatory control properties), differently from children aged 9 and older, who show clearer evidence of knowledge of both types of properties. However, in general, both morpho-syntactic and syntax–semantics interface properties are also accessible to 6–7-year-old children, although these children give preference to a range of interpretations partially different from the adults; in certain cases, they may not appeal to certain pragmatic inferences that permit additional interpretations to adults and older children. Crucially, our data demonstrate that EP children master the two types of properties of inflected infinitives years before Brazilian Portuguese children do (Pires and Rothman, 2009a,b), reasons for and implications of which we discuss in detail.
Resumo:
Metric features and modular and laminar distributions of intrinsic projections of area 17 were studied in Cebus apella. Anterogradely and retrogradely labeled cell appendages were obtained using both saturated pellets and iontophoretic injections of biocytin into the operculum. Laminar and modular distributions of the labeled processes were analyzed using Nissl counterstaining, and/or cytochrome oxidase and/or NADPH-diaphorase histochemistry. We distinguished three labeled cell types: pyramidal, star pyramidal and stellate cells located in supragranular cortical layers (principally in layers IIIa, IIIb α, IIIb ß and IIIc). Three distinct axon terminal morphologies were found, i.e., Ia, Ib and II located in granular and supragranular layers. Both complete and partial segregation of group I axon terminals relative to the limits of the blobs of V1 were found. The results are compatible with recent evidence of incomplete segregation of visual information flow in V1 of Old and New World primates.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Virus-like particles (VLPs) are non-infectious self-assembling nanoparticles, useful in medicine and nanotechnology. Their repetitive molecularly-defined architecture is attractive for engineering multivalency, notably for vaccination. However, decorating VLPs with target-antigens by genetic fusion or chemical modification is time-consuming and often leads to capsid misassembly or antigen misfolding, hindering generation of protective immunity. Here we establish a platform for irreversibly decorating VLPs simply by mixing with protein antigen. SpyCatcher is a genetically-encoded protein designed to spontaneously form a covalent bond to its peptide-partner SpyTag. We expressed in E. coli VLPs from the bacteriophage AP205 genetically fused to SpyCatcher. We demonstrated quantitative covalent coupling to SpyCatcher-VLPs after mixing with SpyTag-linked to malaria antigens, including CIDR and Pfs25. In addition, we showed coupling to the VLPs for peptides relevant to cancer from epidermal growth factor receptor and telomerase. Injecting SpyCatcher-VLPs decorated with a malarial antigen efficiently induced antibody responses after only a single immunization. This simple, efficient and modular decoration of nanoparticles should accelerate vaccine development, as well as other applications of nanoparticle devices.
Resumo:
Self-consciousness implies not only self or group recognition, but also real knowledge of one’s own identity. Self-consciousness is only possible if an individual is intelligent enough to formulate an abstract self-representation. Moreover, it necessarily entails the capability of referencing and using this elf-representation in connection with other cognitive features, such as inference, and the anticipation of the consequences of both one’s own and other individuals’ acts. In this paper, a cognitive architecture for self-consciousness is proposed. This cognitive architecture includes several modules: abstraction, self-representation, other individuals'representation, decision and action modules. It includes a learning process of self-representation by direct (self-experience based) and observational learning (based on the observation of other individuals). For model implementation a new approach is taken using Modular Artificial Neural Networks (MANN). For model testing, a virtual environment has been implemented. This virtual environment can be described as a holonic system or holarchy, meaning that it is composed of autonomous entities that behave both as a whole and as part of a greater whole. The system is composed of a certain number of holons interacting. These holons are equipped with cognitive features, such as sensory perception, and a simplified model of personality and self-representation. We explain holons’ cognitive architecture that enables dynamic self-representation. We analyse the effect of holon interaction, focusing on the evolution of the holon’s abstract self-representation. Finally, the results are explained and analysed and conclusions drawn.
Resumo:
Like most proteins, complex RNA molecules often are modular objects made up of distinct structural and functional domains. The component domains of a protein can associate in alternative combinations to form molecules with different functions. These observations raise the possibility that complex RNAs also can be assembled from preexisting structural and functional domains. To test this hypothesis, an in vitro evolution procedure was used to isolate a previously undescribed class of complex ligase ribozymes, starting from a pool of 1016 different RNA molecules that contained a constant region derived from a large structural domain that occurs within self-splicing group I ribozymes. Attached to this constant region were three hypervariable regions, totaling 85 nucleotides, that gave rise to the catalytic motif within the evolved catalysts. The ligase ribozymes catalyze formation of a 3′,5′-phosphodiester linkage between adjacent template-bound oligonucleotides, one bearing a 3′ hydroxyl and the other a 5′ triphosphate. Ligation occurs in the context of a Watson–Crick duplex, with a catalytic rate of 0.26 min−1 under optimal conditions. The constant region is essential for catalytic activity and appears to retain the tertiary structure of the group I ribozyme. This work demonstrates that complex RNA molecules, like their protein counterparts, can share common structural domains while exhibiting distinct catalytic functions.
Resumo:
In the last 15 years, many class number formulas and main conjectures have been proven. Here, we discuss such formulas on the Selmer groups of the three-dimensional adjoint representation ad(φ) of a two-dimensional modular Galois representation φ. We start with the p-adic Galois representation φ0 of a modular elliptic curve E and present a formula expressing in terms of L(1, ad(φ0)) the intersection number of the elliptic curve E and the complementary abelian variety inside the Jacobian of the modular curve. Then we explain how one can deduce a formula for the order of the Selmer group Sel(ad(φ0)) from the proof of Wiles of the Shimura–Taniyama conjecture. After that, we generalize the formula in an Iwasawa theoretic setting of one and two variables. Here the first variable, T, is the weight variable of the universal p-ordinary Hecke algebra, and the second variable is the cyclotomic variable S. In the one-variable case, we let φ denote the p-ordinary Galois representation with values in GL2(Zp[[T]]) lifting φ0, and the characteristic power series of the Selmer group Sel(ad(φ)) is given by a p-adic L-function interpolating L(1, ad(φk)) for weight k + 2 specialization φk of φ. In the two-variable case, we state a main conjecture on the characteristic power series in Zp[[T, S]] of Sel(ad(φ) ⊗ ν−1), where ν is the universal cyclotomic character with values in Zp[[S]]. Finally, we describe our recent results toward the proof of the conjecture and a possible strategy of proving the main conjecture using p-adic Siegel modular forms.
Resumo:
We discuss the relationship among certain generalizations of results of Hida, Ribet, and Wiles on congruences between modular forms. Hida’s result accounts for congruences in terms of the value of an L-function, and Ribet’s result is related to the behavior of the period that appears there. Wiles’ theory leads to a class number formula relating the value of the L-function to the size of a Galois cohomology group. The behavior of the period is used to deduce that a formula at “nonminimal level” is obtained from one at “minimal level” by dropping Euler factors from the L-function.
Resumo:
The isomorphism problem of arbitrary algebraic structures plays always a central role in the study of a given algebraic object. In this paper we give the first investigations and also some basic results on the isomorphism problem of commutative group algebras in Bulgaria.