933 resultados para Modified diet in renal disease
Resumo:
OBJECTIVES: Non-steroidal anti-inflammatory drugs (NSAIDs) may cause kidney damage. This study assessed the impact of prolonged NSAID exposure on renal function in a large rheumatoid arthritis (RA) patient cohort. METHODS: Renal function was prospectively followed between 1996 and 2007 in 4101 RA patients with multilevel mixed models for longitudinal data over a mean period of 3.2 years. Among the 2739 'NSAID users' were 1290 patients treated with cyclooxygenase type 2 selective NSAIDs, while 1362 subjects were 'NSAID naive'. Primary outcome was the estimated glomerular filtration rate according to the Cockroft-Gault formula (eGFRCG), and secondary the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration formula equations and serum creatinine concentrations. In sensitivity analyses, NSAID dosing effects were compared for patients with NSAID registration in ≤/>50%, ≤/>80% or ≤/>90% of assessments. FINDINGS: In patients with baseline eGFRCG >30 mL/min, eGFRCG evolved without significant differences over time between 'NSAID users' (mean change in eGFRCG -0.87 mL/min/year, 95% CI -1.15 to -0.59) and 'NSAID naive' (-0.67 mL/min/year, 95% CI -1.26 to -0.09, p=0.63). In a multivariate Cox regression analysis adjusted for significant confounders age, sex, body mass index, arterial hypertension, heart disease and for other insignificant factors, NSAIDs were an independent predictor for accelerated renal function decline only in patients with advanced baseline renal impairment (eGFRCG <30 mL/min). Analyses with secondary outcomes and sensitivity analyses confirmed these results. CONCLUSIONS: NSAIDs had no negative impact on renal function estimates but in patients with advanced renal impairment.
Resumo:
Objectives: The aim of this study was to assess a suggested association between periodontitis and renal insufficiency by assaying kidney disease markers. Methods: Variables used to diagnose periodontitis were: (i) probing pocket depth (PPD), (ii) attachment loss (AL), (iii) bleeding on probing (BOP), (iv) plaque index (PI) and (v) extent and severity index. Blood and urine were collected from 60 apparently healthy non-smokers (men and women), consisting of a test group of 30 subjects with periodontitis (age 46±6 yrs) and a control group of 30 healthy subjects (age 43±5 yrs). Kidney function markers (urea, creatinine, uric acid and albumin contents) were measured in the serum and urine. Also, the glomerular filtration rate was estimated from creatinine clearance, from the abbreviated Modification of Diet in Renal Disease formula and from the albumin: creatinine ratio in a 24-h sample of urine. Results: It was found that the control group had a greater mean number of teeth than the test group and that the two groups also differed in PPD, AL, BOP and PI, all these variables being higher in the test group (P=0.006). For the extent and severity index of both PPD and AL, the test group had much higher medians of both extent and severity than the control group (P=0.001). With regard to kidney function, none of the markers revealed a significant difference between the control and test groups and all measured values fell within the reference intervals. Conclusions: It is proposed that severe periodontitis is not associated with any alteration in kidney function.
Resumo:
Monitoring of renal function becomes increasingly important in the aging population of HIV-1 infected patients. We compared Cockroft & Gault (C&G), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), Modification of Diet in Renal Disease (MDRD), Cystatin C- and 24 h urine-based estimated GFR (eGFR) with the gold standard, measured GFR (mGFR) using [125I]-iothalamate.
Resumo:
OBJECTIVES Non-steroidal anti-inflammatory drugs (NSAIDs) may cause kidney damage. This study assessed the impact of prolonged NSAID exposure on renal function in a large rheumatoid arthritis (RA) patient cohort. METHODS Renal function was prospectively followed between 1996 and 2007 in 4101 RA patients with multilevel mixed models for longitudinal data over a mean period of 3.2 years. Among the 2739 'NSAID users' were 1290 patients treated with cyclooxygenase type 2 selective NSAIDs, while 1362 subjects were 'NSAID naive'. Primary outcome was the estimated glomerular filtration rate according to the Cockroft-Gault formula (eGFRCG), and secondary the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration formula equations and serum creatinine concentrations. In sensitivity analyses, NSAID dosing effects were compared for patients with NSAID registration in ≤/>50%, ≤/>80% or ≤/>90% of assessments. FINDINGS In patients with baseline eGFRCG >30 mL/min, eGFRCG evolved without significant differences over time between 'NSAID users' (mean change in eGFRCG -0.87 mL/min/year, 95% CI -1.15 to -0.59) and 'NSAID naive' (-0.67 mL/min/year, 95% CI -1.26 to -0.09, p=0.63). In a multivariate Cox regression analysis adjusted for significant confounders age, sex, body mass index, arterial hypertension, heart disease and for other insignificant factors, NSAIDs were an independent predictor for accelerated renal function decline only in patients with advanced baseline renal impairment (eGFRCG <30 mL/min). Analyses with secondary outcomes and sensitivity analyses confirmed these results. CONCLUSIONS NSAIDs had no negative impact on renal function estimates but in patients with advanced renal impairment.
Resumo:
In the present study, we wanted to (1) evaluate whether high-sensitive troponin T levels correlate with the grade of renal insufficiency and (2) test the accuracy of high-sensitive troponin T determination in patients with renal insufficiency for diagnosis of acute myocardial infarction (AMI). In this cross-sectional analysis, all patients who received serial measurements of high-sensitive troponin T from August 1, 2010, to October 31, 2012, at the Department of Emergency Medicine were included. We analyzed data on baseline characteristics, reason for referral, medication, cardiovascular risk factors, and outcome in terms of presence of AMI along with laboratory data (high-sensitive troponin T, creatinine). A total of 1,514 patients (67% male, aged 65 ± 16 years) were included, of which 382 patients (25%) had moderate to severe renal insufficiency and significantly higher levels of high-sensitive troponin T on admission (0.028 vs 0.009, p <0.0001). In patients without AMI, high-sensitive troponin T correlated inversely with the estimated glomerular filtration rate (R = -0.12, p <0.0001). Overall, sensitivity of an elevated high-sensitive troponin for diagnosis of AMI was 0.64 (0.56 to 0.71) and the specificity was 0.48 (0.45 to 0.51). The area under the curve of the receiver operating characteristic for all patients was 0.613 (standard error [SE] 0.023), whereas it was 0.741 (SE 0.029) for patients with a Modification of Diet in Renal Disease estimated glomerular filtration rate >60 ml/min presenting with acute chest pain or dyspnea and 0.535 (SE 0.056) for patients with moderate to severe renal insufficiency presenting with acute chest pain or dyspnea. In conclusion, the diagnostic accuracy for presence of AMI of a baseline measurement of high-sensitive troponin in patients with renal insufficiency was poor and resembles tossing a coin.
Resumo:
BACKGROUND: Renal involvement is a serious manifestation of systemic lupus erythematosus (SLE); it may portend a poor prognosis as it may lead to end-stage renal disease (ESRD). The purpose of this study was to determine the factors predicting the development of renal involvement and its progression to ESRD in a multi-ethnic SLE cohort (PROFILE). METHODS AND FINDINGS: PROFILE includes SLE patients from five different United States institutions. We examined at baseline the socioeconomic-demographic, clinical, and genetic variables associated with the development of renal involvement and its progression to ESRD by univariable and multivariable Cox proportional hazards regression analyses. Analyses of onset of renal involvement included only patients with renal involvement after SLE diagnosis (n = 229). Analyses of ESRD included all patients, regardless of whether renal involvement occurred before, at, or after SLE diagnosis (34 of 438 patients). In addition, we performed a multivariable logistic regression analysis of the variables associated with the development of renal involvement at any time during the course of SLE.In the time-dependent multivariable analysis, patients developing renal involvement were more likely to have more American College of Rheumatology criteria for SLE, and to be younger, hypertensive, and of African-American or Hispanic (from Texas) ethnicity. Alternative regression models were consistent with these results. In addition to greater accrued disease damage (renal damage excluded), younger age, and Hispanic ethnicity (from Texas), homozygosity for the valine allele of FcgammaRIIIa (FCGR3A*GG) was a significant predictor of ESRD. Results from the multivariable logistic regression model that included all cases of renal involvement were consistent with those from the Cox model. CONCLUSIONS: Fcgamma receptor genotype is a risk factor for progression of renal disease to ESRD. Since the frequency distribution of FCGR3A alleles does not vary significantly among the ethnic groups studied, the additional factors underlying the ethnic disparities in renal disease progression remain to be elucidated.
Resumo:
Chronically haemodialysed end-stage renal disease patients are at high risk of morbidity arising from complications of dialysis, the underlying pathology that has led to renal disease and the complex pathology of chronic kidney disease. Anaemia is commonplace and its origins are multifactorial, involving reduced renal erythropoietin production, accumulation of uremic toxins and an increase in erythrocyte fragility. Oxidative damage is a common risk factor in renal disease and its co-morbidities and is known to cause erythrocyte fragility. Therefore, we have investigated the hypothesis that specific erythrocyte membrane proteins are more oxidised in end-stage renal disease patients and that vitamin C supplementation can ameliorate membrane protein oxidation. Eleven patients and 15 control subjects were recruited to the study. Patients were supplemented with 2 × 500 mg vitamin C per day for 4 weeks. Erythrocyte membrane proteins were prepared pre- and post-vitamin C supplementation for determination of protein oxidation. Total protein carbonyls were reduced by vitamin C supplementation but not by dialysis when investigated by enzyme linked immunosorbent assay. Using a western blot to detect oxidised proteins, one protein band, later identified as containing ankyrin, was found to be oxidised in patients but not controls and was reduced significantly by 60% in all patients after dialysis and by 20% after vitamin C treatment pre-dialysis. Ankyrin oxidation analysis may be useful in a stratified medicines approach as a possible marker to identify requirements for intervention in dialysis patients.
Resumo:
FUNDAMENTOS: Insuficiência cardíaca (IC) é uma doença comum com alta taxa de mortalidade. Anemia e insuficiência renal (IR) são frequentemente encontradas em portadores de IC associadas com maior gravidade da doença cardíaca e pior prognóstico. OBJETIVO: Avaliar a prevalência de anemia e insuficiência renal, bem como a associação entre esses dois quadros, em portadores de IC não hospitalizados. MÉTODOS: Foram observados pacientes acompanhandos na clínica de IC de um hospital universitário de julho de 2003 a novembro de 2006. Anemia foi definida como níveis de hemoglobina abaixo de 13 mg/dl para homens e de 12 mg/dl para mulheres. A função renal foi avaliada por meio da taxa de filtração glomerular (TFG), calculada pela fórmula simplificada do estudo MDRD (Modification of Diet in Renal Disease). RESULTADOS: Dos trezentos e quarenta e cinco pacientes incluídos neste estudo, 26,4% (n = 91) tinham anemia e 29,6% tinham insuficiência renal moderada a grave (TFG < 60 ml/min). A associação entre anemia e maior prevalência de insuficiência renal foi estatisticamente significante (41,8% vs. 25,2%; p = 0,005). Os pacientes em classe funcional III e IV apresentaram maior incidência de anemia (39,0% vs. 19,4%; p <0,001) e insuficiência renal (38,2% vs. 24,8%; p = 0,007). Não foi observada associação entre anemia ou insuficiência renal e história de hipertensão, diabetes, função sistólica ou etiologia de insuficiência cardíaca. CONCLUSÃO: A prevalência de anemia e insuficiência renal foi elevada nessa população e foi associada com a gravidade da insuficiência cardíaca (classes funcionais III e IV).
Resumo:
BACKGROUND: Estimated glomerular filtration rate (eGFR) is an important diagnostic instrument in clinical practice. The National Kidney Foundation-Kidney Disease Quality Initiative (NKF-KDOQI) guidelines do not recommend using formulas developed for adults to estimate GFR in children; however, studies confirming these recommendations are scarce. The aim of our study was to evaluate the accuracy of the new Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula, the Modification of Diet in Renal Disease (MDRD) formula, and the Cockcroft-Gault formula in children with various stages of chronic kidney disease (CKD). METHODS: A total of 550 inulin clearance (iGFR) measurements for 391 children were analyzed. The cohort was divided into three groups: group 1, with iGFR >90 ml/min/1.73 m(2); group 2, with iGFR between 60 and 90 ml/min/1.73 m(2); group 3, with iGFR of <60 ml/min/1.73 m(2). RESULTS: All formulas overestimate iGFR with a significant bias (p < 0.001), present poor accuracies, and have poor Spearman correlations. For an accuracy of 10 %, only 11, 6, and 27 % of the eGFRs are accurate when using the MDRD, CKD-EPI, and Cockcroft-Gault formulas, respectively. For an accuracy of 30 %, these formulas do not reach the NKF-KDOQI guidelines for validation, with only 25, 20, and 70 % of the eGFRs, respectively, being accurate. CONCLUSIONS: Based on our results, the performances of all of these formulas are unreliable for eGFR in children across all CKD stages and cannot therefore be applied in the pediatric population group.
Resumo:
The MDRD (Modification of diet in renal disease) equation enables glomerular filtration rate (GFR) estimation from serum creatinine only. Thus, the laboratory can report an estimated GFR (eGFR) with each serum creatinine assessment, increasing therefore the recognition of renal failure. Predictive performance of MDRD equation is better for GFR < 60 ml/min/1,73 m2. A normal or near-normal renal function is often underestimated by this equation. Overall, MDRD provides more reliable estimations of renal function than the Cockcroft-Gault (C-G) formula, but both lack precision. MDRD is not superior to C-G for drug dosing. Being adjusted to 1,73 m2, MDRD eGFR has to be back adjusted to the patient's body surface area for drug dosing. Besides, C-G has the advantage of a greater simplicity and a longer use.
Resumo:
BACKGROUND: Estimation of glomerular filtration rate (eGFR) using a common formula for both adult and pediatric populations is challenging. Using inulin clearances (iGFRs), this study aims to investigate the existence of a precise age cutoff beyond which the Modification of Diet in Renal Disease (MDRD), the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), or the Cockroft-Gault (CG) formulas, can be applied with acceptable precision. Performance of the new Schwartz formula according to age is also evaluated. METHOD: We compared 503 iGFRs for 503 children aged between 33 months and 18 years to eGFRs. To define the most precise age cutoff value for each formula, a circular binary segmentation method analyzing the formulas' bias values according to the children's ages was performed. Bias was defined by the difference between iGFRs and eGFRs. To validate the identified cutoff, 30% accuracy was calculated. RESULTS: For MDRD, CKD-EPI and CG, the best age cutoff was ≥14.3, ≥14.2 and ≤10.8 years, respectively. The lowest mean bias and highest accuracy were -17.11 and 64.7% for MDRD, 27.4 and 51% for CKD-EPI, and 8.31 and 77.2% for CG. The Schwartz formula showed the best performance below the age of 10.9 years. CONCLUSION: For the MDRD and CKD-EPI formulas, the mean bias values decreased with increasing child age and these formulas were more accurate beyond an age cutoff of 14.3 and 14.2 years, respectively. For the CG and Schwartz formulas, the lowest mean bias values and the best accuracies were below an age cutoff of 10.8 and 10.9 years, respectively. Nevertheless, the accuracies of the formulas were still below the National Kidney Foundation Kidney Disease Outcomes Quality Initiative target to be validated in these age groups and, therefore, none of these formulas can be used to estimate GFR in children and adolescent populations.
Resumo:
The objective of this study was to evaluate the effect of metabolic syndrome (MetS) and its individual components on the renal function of patients with type 2 diabetes mellitus (DM). A cross-sectional study was performed in 842 type 2 DM patients. A clinical and laboratory evaluation, including estimated glomerular filtration rate (eGFR) calculated by the modification of diet in renal disease formula, was performed. MetS was defined according to National Cholesterol Education Program - Adult Treatment Panel III criteria. Mean patient age was 57.9 ± 10.1 years and 313 (37.2%) patients were males. MetS was detected in 662 (78.6%) patients. A progressive reduction in eGFR was observed as the number of individual MetS components increased (one: 98.2 ± 30.8; two: 92.9 ± 28.1; three: 84.0 ± 25.1; four: 83.8 ± 28.5, and five: 79.0 ± 23.0; P < 0.001). MetS increased the risk for low eGFR (<60 mL·min-1·1.73 (m²)-1) 2.82-fold (95%CI = 1.55-5.12, P < 0.001). Hypertension (OR = 2.2, 95%CI = 1.39-3.49, P = 0.001) and hypertriglyceridemia (OR = 1.62, 95%CI = 1.19-2.20, P = 0.002) were the individual components with the strongest associations with low eGFR. In conclusion, there is an association between MetS and the reduction of eGFR in patients with type 2 DM, with hypertension and hypertriglyceridemia being the most important contributors in this sample. Interventional studies should be conducted to determine if treatment of MetS can prevent renal failure in type 2 DM patients.
Resumo:
Introdução: Estudos recentes demonstram o aumento da prevalência de Disfunção Cognitiva em pacientes com Doença Renal Crônica. Objetivo: Avaliar a referida associação nos utentes inscritos na Unidade de Saúde Familiar-Ponte. Métodos: Estudamos uma amostra constituída por 246 idosos. Avaliamos a função cognitiva por meio do Mini Mental State Examination e a Taxa de Filtração Glomerular com recurso à equação Modification of Diet in Renal Disease. Os valores da Taxa de Filtração Glomerular obtidos (ml/min/1,73 m2) foram distribuídos por três categorias: < 60,00, 60-89,99 e ≥ 90. Recolhemos variáveis adicionais do Serviço de Apoio ao Médico e estudamos os dados recorrendo a análises bivariadas e a modelos de regressão logística. Resultados: Os grupos com Taxa de Filtração Glomerular < 60 e ≥ 90 apresentaram maior prevalência de Disfunção Cognitiva, independentemente de outros fatores. Os odds-ratio foram, respectivamente, de 4,534 (IC95%: 1,257-16,356) e 3,302 (IC95%: 1,434-7,607). Discussão: Conforme a literatura, verificamos maior prevalência de Disfunção Cognitiva no grupo com Taxa de Filtração Glomerular < 60. A elevada prevalência de Disfunção Cognitiva nos utentes com Taxa de Filtração Glomerular ≥ 90 está descrita em alguns estudos e poderá dever-se a situações que induzam a sobrestimação da mesma taxa, como nos estados de caquexia, ou a situações de hiperfiltração glomerular. Conclusão: Constatamos que a relação entre a função renal e a prevalência de Disfunção Cognitiva não foi linear, mas sim parabólica. Novos estudos são necessários para se explicar o porquê deste achado e para se averiguar a necessidade de vigilância da Disfunção Cognitiva em pacientes com alterações da função renal.
Resumo:
BACKGROUND Estimation of glomerular filtration rate (eGFR) using a common formula for both adult and pediatric populations is challenging. Using inulin clearances (iGFRs), this study aims to investigate the existence of a precise age cutoff beyond which the Modification of Diet in Renal Disease (MDRD), the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), or the Cockroft-Gault (CG) formulas, can be applied with acceptable precision. Performance of the new Schwartz formula according to age is also evaluated. METHOD We compared 503 iGFRs for 503 children aged between 33 months and 18 years to eGFRs. To define the most precise age cutoff value for each formula, a circular binary segmentation method analyzing the formulas' bias values according to the children's ages was performed. Bias was defined by the difference between iGFRs and eGFRs. To validate the identified cutoff, 30% accuracy was calculated. RESULTS For MDRD, CKD-EPI and CG, the best age cutoff was ≥14.3, ≥14.2 and ≤10.8 years, respectively. The lowest mean bias and highest accuracy were -17.11 and 64.7% for MDRD, 27.4 and 51% for CKD-EPI, and 8.31 and 77.2% for CG. The Schwartz formula showed the best performance below the age of 10.9 years. CONCLUSION For the MDRD and CKD-EPI formulas, the mean bias values decreased with increasing child age and these formulas were more accurate beyond an age cutoff of 14.3 and 14.2 years, respectively. For the CG and Schwartz formulas, the lowest mean bias values and the best accuracies were below an age cutoff of 10.8 and 10.9 years, respectively. Nevertheless, the accuracies of the formulas were still below the National Kidney Foundation Kidney Disease Outcomes Quality Initiative target to be validated in these age groups and, therefore, none of these formulas can be used to estimate GFR in children and adolescent populations.
Resumo:
Protein kinase C (PKC) comprises a superfamily of isoenzymes, many of which are activated by cofactors such as diacylglycerol and phosphatidylserine. In order to be capable of activation, PKC must first undergo a series of phosphorylations. In turn, activated PKC phosphorylates a wide variety of intracellular target proteins and has multiple functions in signal transduced cellular regulation. A role for PKC activation had been noted in several renal diseases, but two that have had most investigation are diabetic nephropathy and kidney cancer. In diabetic nephropathy, an elevation in diacylglycerol and/or other cofactor stimulants leads to an increase in activity of certain PKC isoforms, changes that are linked to the development of dysfunctional vasculature. The ability of isoform-specific PKC inhibitors to antagonize diabetes-induced vascular disease is a new avenue for treatment of this disorder. In the development and progressive invasiveness of kidney cancer, increased activity of several specific isoforms of PKC has been noted. It is thought that this may promote the kidney cancer's inherent resistance to apoptosis, in natural regression or after treatments, or it may promote the invasiveness of renal cancers via cellular differentiation pathways. In general, however, a more complete understanding of the functions of individual PKC isoforms in the kidney, and development or recognition of specific inhibitors or promoters of their activation, will be necessary to apply this knowledge for treatment of cellular dysregulation in renal disease.