955 resultados para Models of Development and Distribution of Software
Resumo:
Survival and development time from egg to adult emergence of the diamondback moth, Plutella xylostella (L.), were determined at 19 constant and 14 alternating temperature regimes from 4 to 40degreesC. Plutella xylostella developed successfully front egg to adult emergence at constant temperatures from 8 to 32degreesC. At temperatures from 4 to 6degreesC or from 34 to 40degreesC, partial or complete development of individual stages or instars was possible, with third and fourth instars having the widest temperature limits. The insect developed successfully from egg to adult emergence under alternating regimes including temperatures as low as 4degreesC or as high as 38degreesC. The degree-day model, the logistic equation, and the Wang model were used to describe the relationships between temperature and development rate at both constant and alternating temperatures. The degree-day model described the relationships well from 10 to 30degreesC. The logistic equation and the Wang model fit the data well at temperatures 32degreesC. Under alternating regimes, all three models gave good simulations of development in the mid-temperature range, but only the logistic equation gave close simulations in the low temperature range, and none gave close or consistent simulations in the high temperature range. The distribution of development time was described satisfactorily by a Weibull function. These rate and time distribution functions provide tools for simulating population development of P. xylostella over a wide range of temperature conditions.
Resumo:
This work was supported by FCT (Fundação para a Ciência e Tecnologia) within Project Scope (UID/CEC/00319/2013), by LIP (Laboratório de Instrumentação e Física Experimental de Partículas) and by Project Search-ON2 (NORTE-07-0162- FEDER-000086), co-funded by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework, through the European Regional Development Fund.
Resumo:
The research described in this thesis was developed as part o f the Information Management for Green Design (IMA GREE) Project. The 1MAGREE Project was founded by Enterprise Ireland under a Strategic Research Grant Scheme as a partnership project between Galway Mayo Institute o f Technology and C1MRU University College Galway. The project aimed to develop a CAD integrated software tool to support environmental information management for design, particularly for the electronics-manufacturing sector in Ireland.
Resumo:
Feature-Oriented Programming, Aspect-Oriented Programming, Software Product Lines, Stepwise Development
Resumo:
AbstractBackground:30-40% of cardiac resynchronization therapy cases do not achieve favorable outcomes.Objective:This study aimed to develop predictive models for the combined endpoint of cardiac death and transplantation (Tx) at different stages of cardiac resynchronization therapy (CRT).Methods:Prospective observational study of 116 patients aged 64.8 ± 11.1 years, 68.1% of whom had functional class (FC) III and 31.9% had ambulatory class IV. Clinical, electrocardiographic and echocardiographic variables were assessed by using Cox regression and Kaplan-Meier curves.Results:The cardiac mortality/Tx rate was 16.3% during the follow-up period of 34.0 ± 17.9 months. Prior to implantation, right ventricular dysfunction (RVD), ejection fraction < 25% and use of high doses of diuretics (HDD) increased the risk of cardiac death and Tx by 3.9-, 4.8-, and 5.9-fold, respectively. In the first year after CRT, RVD, HDD and hospitalization due to congestive heart failure increased the risk of death at hazard ratios of 3.5, 5.3, and 12.5, respectively. In the second year after CRT, RVD and FC III/IV were significant risk factors of mortality in the multivariate Cox model. The accuracy rates of the models were 84.6% at preimplantation, 93% in the first year after CRT, and 90.5% in the second year after CRT. The models were validated by bootstrapping.Conclusion:We developed predictive models of cardiac death and Tx at different stages of CRT based on the analysis of simple and easily obtainable clinical and echocardiographic variables. The models showed good accuracy and adjustment, were validated internally, and are useful in the selection, monitoring and counseling of patients indicated for CRT.
Resumo:
The influence of temperature on the developmental times and survival of insects can largely determine their distribution. For invasive species, like the Argentine ant, Linepithema humile Mayr (Hymenoptera: Formicidae), these data are essential for predicting their potential range based on mechanistic models. In the case of this species, such data are too scarce and incomplete to make accurate predictions based on its physiological needs. This research provides comprehensive new data about brood survival and developmental times at a wide range of temperatures under laboratory conditions. Temperature affected both the complete brood development from egg to adult worker and each of the immature stages separately. The higher the temperature, the shorter the development times. Brood survival from egg to adult was low, with the maximum survival rate being only 16% at 26º C. Temperature also affected survival of each of the immature stages differently: eggs were negatively affected by high temperatures, while larvae were negatively affected by low temperatures, and the survival of pupae was apparentlyindependent of environmental temperature. At 32º C no eggs survived, while at 18º C less than 2% of the eggs hatched into larva. The data from the present study are essential for developing prediction models about the distribution range of this tramp species based on its physiological needs in relation to temperature
Resumo:
Gene expression data from microarrays are being applied to predict preclinical and clinical endpoints, but the reliability of these predictions has not been established. In the MAQC-II project, 36 independent teams analyzed six microarray data sets to generate predictive models for classifying a sample with respect to one of 13 endpoints indicative of lung or liver toxicity in rodents, or of breast cancer, multiple myeloma or neuroblastoma in humans. In total, >30,000 models were built using many combinations of analytical methods. The teams generated predictive models without knowing the biological meaning of some of the endpoints and, to mimic clinical reality, tested the models on data that had not been used for training. We found that model performance depended largely on the endpoint and team proficiency and that different approaches generated models of similar performance. The conclusions and recommendations from MAQC-II should be useful for regulatory agencies, study committees and independent investigators that evaluate methods for global gene expression analysis.
Resumo:
The influence of temperature on the developmental times and survival of insects can largely determine their distribution. For invasive species, like the Argentine ant, Linepithema humile Mayr (Hymenoptera: Formicidae), these data are essential for predicting their potential range based on mechanistic models. In the case of this species, such data are too scarce and incomplete to make accurate predictions based on its physiological needs. This research provides comprehensive new data about brood survival and developmental times at a wide range of temperatures under laboratory conditions. Temperature affected both the complete brood development from egg to adult worker and each of the immature stages separately. The higher the temperature, the shorter the development times. Brood survival from egg to adult was low, with the maximum survival rate being only 16% at 26° C. Temperature also affected survival of each of the immature stages differently: eggs were negatively affected by high temperatures, while larvae were negatively affected by low temperatures, and the survival of pupae was apparently independent of environmental temperature. At 32° C no eggs survived, while at 18° C less than 2% of the eggs hatched into larva. The data from the present study are essential for developing prediction models about the distribution range of this tramp species based on its physiological needs in relation to temperature
Resumo:
Many patients develop tumor antigen-specific T cell responses detectable in peripheral blood mononuclear cells (PBMCs) following cancer vaccine. However, measurable tumor regression is observed in a limited number of patients receiving cancer vaccines. There is a need to re-evaluate systemically the immune responses induced by cancer vaccines. Here, we established animal models targeting two human cancer/testis antigens, NY-ESO-1 and MAGE-A4. Cytotoxic T lymphocyte (CTL) epitopes of these antigens were investigated by immunizing BALB/c mice with plasmids encoding the entire sequences of NY-ESO-1 or MAGE-A4. CD8(+) T cells specific for NY-ESO-1 or MAGE-A4 were able to be detected by ELISPOT assays using antigen presenting cells pulsed with overlapping peptides covering the whole protein, indicating the high immunogenicity of these antigens in mice. Truncation of these peptides revealed that NY-ESO-1-specific CD8(+) T cells recognized D(d)-restricted 8mer peptides, NY-ESO-181-88. MAGE-A4-specific CD8(+) T cells recognized D(d)-restricted 9mer peptides, MAGE-A4265-273. MHC/peptide tetramers allowed us to analyze the kinetics and distribution of the antigen-specific immune responses, and we found that stronger antigen-specific CD8(+) T cell responses were required for more effective anti-tumor activity. Taken together, these animal models are valuable for evaluation of immune responses and optimization of the efficacy of cancer vaccines.
Resumo:
The development of the field-scale Erosion Productivity Impact Calculator (EPIC) model was initiated in 1981 to support assessments of soil erosion impacts on soil productivity for soil, climate, and cropping conditions representative of a broad spectrum of U.S. agricultural production regions. The first major application of EPIC was a national analysis performed in support of the 1985 Resources Conservation Act (RCA) assessment. The model has continuously evolved since that time and has been applied for a wide range of field, regional, and national studies both in the U.S. and in other countries. The range of EPIC applications has also expanded greatly over that time, including studies of (1) surface runoff and leaching estimates of nitrogen and phosphorus losses from fertilizer and manure applications, (2) leaching and runoff from simulated pesticide applications, (3) soil erosion losses from wind erosion, (4) climate change impacts on crop yield and erosion, and (5) soil carbon sequestration assessments. The EPIC acronym now stands for Erosion Policy Impact Climate, to reflect the greater diversity of problems to which the model is currently applied. The Agricultural Policy EXtender (APEX) model is essentially a multi-field version of EPIC that was developed in the late 1990s to address environmental problems associated with livestock and other agricultural production systems on a whole-farm or small watershed basis. The APEX model also continues to evolve and to be utilized for a wide variety of environmental assessments. The historical development for both models will be presented, as well as example applications on several different scales.
Resumo:
Cultural variation in a population is affected by the rate of occurrence of cultural innovations, whether such innovations are preferred or eschewed, how they are transmitted between individuals in the population, and the size of the population. An innovation, such as a modification in an attribute of a handaxe, may be lost or may become a property of all handaxes, which we call "fixation of the innovation." Alternatively, several innovations may attain appreciable frequencies, in which case properties of the frequency distribution-for example, of handaxe measurements-is important. Here we apply the Moran model from the stochastic theory of population genetics to study the evolution of cultural innovations. We obtain the probability that an initially rare innovation becomes fixed, and the expected time this takes. When variation in cultural traits is due to recurrent innovation, copy error, and sampling from generation to generation, we describe properties of this variation, such as the level of heterogeneity expected in the population. For all of these, we determine the effect of the mode of social transmission: conformist, where there is a tendency for each naïve newborn to copy the most popular variant; pro-novelty bias, where the newborn prefers a specific variant if it exists among those it samples; one-to-many transmission, where the variant one individual carries is copied by all newborns while that individual remains alive. We compare our findings with those predicted by prevailing theories for rates of cultural change and the distribution of cultural variation.
Resumo:
This paper breaks new ground toward contractual and institutional innovation in models of homeownership, equity building, and mortgage enforcement. Inspired by recent developments in the affordable housing sector and in other types of public financing schemes, this paper suggests extending institutional and financial strategies such as timeand place-based division of property rights, conditional subsidies, and credit mediation to alleviate the systemic risks of mortgage foreclosure. Alongside a for-profit shared equity scheme that would be led by local governments, we also outline a private market shared equity model, one of bootstrapping home buying with purchase options.
Resumo:
We have compared by immunocytochemistry and immunoblotting the expression and distribution of adhesion molecules participating in cell-matrix and cell-cell interactions during embryonic development and regeneration of rat liver. Fibronectin and the fibronectin receptor, integrin alpha 5 beta 1, were distributed pericellularly and expressed at a steady level during development from the 16th day of gestation and in neonate and adult liver. AGp110, a nonintegrin fibronectin receptor was first detected on the 17th day of gestation in a similar, nonpolarized distribution on parenchymal cell surfaces. At that stage of development haemopoiesis is at a peak in rat liver and fibronectin and receptors alpha 5 beta 1 and AGp110 were prominent on the surface of blood cell precursors. During the last 2 d of gestation (20th and 21st day) hepatocytes assembled around lumina. AGp110 was initially depolarized on the surface of these acinar cells but then confined to the lumen and to newly-formed bile canaliculi. At birth, a marked increase occurred in the canalicular expression of AGp110 and in the branching of the canalicular network. Simultaneously, there was enhanced expression of ZO-1, a protein component of tight junctions. On the second day postpartum, presence of AGp110 and of protein constituents of desmosomes and intermediate junctions, DGI and E-cadherin, respectively, was notably enhanced in cellular fractions insoluble in nonionic detergents, presumably signifying linkage of AGp110 with the cytoskeleton and assembly of desmosomal and intermediate junctions. During liver regeneration after partial hepatectomy, AGp110 remained confined to apical surfaces, indicating a preservation of basic polarity in parenchymal cells. A decrease in the extent and continuity of the canalicular network occurred in proliferating parenchyma, starting 24 h after resection in areas close to the terminal afferent blood supply of portal veins and spreading to the rest of the liver within the next 24 h. Distinct acinar structures, similar to the ones in prenatal liver, appeared at 72 h after hepatectomy. Restoration of the normal branching of the biliary tree commenced at 72 h. At 7 d postoperatively acinar formation declined and one-cell-thick hepatic plates, as in normal liver, were observed.
Resumo:
The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m-2 d-1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation.