998 resultados para Modal domain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. This paper first presents a brief review of the most inherent uncertainties of the SHM-oriented WSN platforms and then investigates their effects on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when employing merged data from multiple tests. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and Data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Experimental accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as clean data before being contaminated by different data pollutants in sequential manner to simulate practical SHM-oriented WSN uncertainties. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with SHM-WSN uncertainties. Finally, the use of the measurement channel projection for the time-domain OMA techniques and the preferred combination of the OMA techniques to cope with the SHM-WSN uncertainties is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Operational modal analysis (OMA) is prevalent in modal identifi cation of civil structures. It asks for response measurements of the underlying structure under ambient loads. A valid OMA method requires the excitation be white noise in time and space. Although there are numerous applications of OMA in the literature, few have investigated the statistical distribution of a measurement and the infl uence of such randomness to modal identifi cation. This research has attempted modifi ed kurtosis to evaluate the statistical distribution of raw measurement data. In addition, a windowing strategy employing this index has been proposed to select quality datasets. In order to demonstrate how the data selection strategy works, the ambient vibration measurements of a laboratory bridge model and a real cable-stayed bridge have been respectively considered. The analysis incorporated with frequency domain decomposition (FDD) as the target OMA approach for modal identifi cation. The modal identifi cation results using the data segments with different randomness have been compared. The discrepancy in FDD spectra of the results indicates that, in order to fulfi l the assumption of an OMA method, special care shall be taken in processing a long vibration measurement data. The proposed data selection strategy is easy-to-apply and verifi ed effective in modal analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In attempting to build intelligent litigation support tools, we have moved beyond first generation, production rule legal expert systems. Our work integrates rule based and case based reasoning with intelligent information retrieval. When using the case based reasoning methodology, or in our case the specialisation of case based retrieval, we need to be aware of how to retrieve relevant experience. Our research, in the legal domain, specifies an approach to the retrieval problem which relies heavily on an extended object oriented/rule based system architecture that is supplemented with causal background information. We use a distributed agent architecture to help support the reasoning process of lawyers. Our approach to integrating rule based reasoning, case based reasoning and case based retrieval is contrasted to the CABARET and PROLEXS architectures which rely on a centralised blackboard architecture. We discuss in detail how our various cooperating agents interact, and provide examples of the system at work. The IKBALS system uses a specialised induction algorithm to induce rules from cases. These rules are then used as indices during the case based retrieval process. Because we aim to build legal support tools which can be modified to suit various domains rather than single purpose legal expert systems, we focus on principles behind developing legal knowledge based systems. The original domain chosen was theAccident Compensation Act 1989 (Victoria, Australia), which relates to the provision of benefits for employees injured at work. For various reasons, which are indicated in the paper, we changed our domain to that ofCredit Act 1984 (Victoria, Australia). This Act regulates the provision of loans by financial institutions. The rule based part of our system which provides advice on the Credit Act has been commercially developed in conjunction with a legal firm. We indicate how this work has lead to the development of a methodology for constructing rule based legal knowledge based systems. We explain the process of integrating this existing commercial rule based system with the case base reasoning and retrieval architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background As the increasing adoption of information technology continues to offer better distant medical services, the distribution of, and remote access to digital medical images over public networks continues to grow significantly. Such use of medical images raises serious concerns for their continuous security protection, which digital watermarking has shown great potential to address. Methods We present a content-independent embedding scheme for medical image watermarking. We observe that the perceptual content of medical images varies widely with their modalities. Recent medical image watermarking schemes are image-content dependent and thus they may suffer from inconsistent embedding capacity and visual artefacts. To attain the image content-independent embedding property, we generalise RONI (region of non-interest, to the medical professionals) selection process and use it for embedding by utilising RONI’s least significant bit-planes. The proposed scheme thus avoids the need for RONI segmentation that incurs capacity and computational overheads. Results Our experimental results demonstrate that the proposed embedding scheme performs consistently over a dataset of 370 medical images including their 7 different modalities. Experimental results also verify how the state-of-the-art reversible schemes can have an inconsistent performance for different modalities of medical images. Our scheme has MSSIM (Mean Structural SIMilarity) larger than 0.999 with a deterministically adaptable embedding capacity. Conclusions Our proposed image-content independent embedding scheme is modality-wise consistent, and maintains a good image quality of RONI while keeping all other pixels in the image untouched. Thus, with an appropriate watermarking framework (i.e., with the considerations of watermark generation, embedding and detection functions), our proposed scheme can be viable for the multi-modality medical image applications and distant medical services such as teleradiology and eHealth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, it is not easy to carry out tests to identify modal parameters from existing railway bridges because of the testing conditions and complicated nature of civil structures. A six year (2007-2012) research program was conducted to monitor a group of 25 railway bridges. One of the tasks was to devise guidelines for identifying their modal parameters. This paper presents the experience acquired from such identification. The modal analysis of four representative bridges of this group is reported, which include B5, B15, B20 and B58A, crossing the Carajás railway in northern Brazil using three different excitations sources: drop weight, free vibration after train passage, and ambient conditions. To extract the dynamic parameters from the recorded data, Stochastic Subspace Identification and Frequency Domain Decomposition methods were used. Finite-element models were constructed to facilitate the dynamic measurements. The results show good agreement between the measured and computed natural frequencies and mode shapes. The findings provide some guidelines on methods of excitation, record length of time, methods of modal analysis including the use of projected channel and harmonic detection, helping researchers and maintenance teams obtain good dynamic characteristics from measurement data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blood travels throughout the body and thus its flow is modulated by changes in body condition. As a consequence, the wrist pulse signal contains important information about the status of the human body. In this work we have employed signal processing techniques to extract important information from these signals. Radial artery pulse pressure signals are acquired at wrist position noninvasively for several subjects for two cases of interest, viz. before and after exercise, and before and after lunch. Further analysis is performed by fitting a bi-modal Gaussian model to the data and extracting spatial features from the fit. The spatial features show statistically significant (p < 0.001) changes between the groups for both the cases, which indicates that they are effective in distinguishing the changes taking place due to exercise or food intake. Recursive cluster elimination based support vector machine classifier is used to classify between the groups. A high classification accuracy of 99.71% is achieved for the exercise case and 99.94% is achieved for the lunch case. This paper demonstrates the utility of certain spatial features in studying wrist pulse signals obtained under various experimental conditions. The ability of the spatial features in distinguishing changing body conditions can be potentially used for various healthcare applications. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross domain and cross-modal matching has many applications in the field of computer vision and pattern recognition. A few examples are heterogeneous face recognition, cross view action recognition, etc. This is a very challenging task since the data in two domains can differ significantly. In this work, we propose a coupled dictionary and transformation learning approach that models the relationship between the data in both domains. The approach learns a pair of transformation matrices that map the data in the two domains in such a manner that they share common sparse representations with respect to their own dictionaries in the transformed space. The dictionaries for the two domains are learnt in a coupled manner with an additional discriminative term to ensure improved recognition performance. The dictionaries and the transformation matrices are jointly updated in an iterative manner. The applicability of the proposed approach is illustrated by evaluating its performance on different challenging tasks: face recognition across pose, illumination and resolution, heterogeneous face recognition and cross view action recognition. Extensive experiments on five datasets namely, CMU-PIE, Multi-PIE, ChokePoint, HFB and IXMAS datasets and comparisons with several state-of-the-art approaches show the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross domain and cross-modal matching has many applications in the field of computer vision and pattern recognition. A few examples are heterogeneous face recognition, cross view action recognition, etc. This is a very challenging task since the data in two domains can differ significantly. In this work, we propose a coupled dictionary and transformation learning approach that models the relationship between the data in both domains. The approach learns a pair of transformation matrices that map the data in the two domains in such a manner that they share common sparse representations with respect to their own dictionaries in the transformed space. The dictionaries for the two domains are learnt in a coupled manner with an additional discriminative term to ensure improved recognition performance. The dictionaries and the transformation matrices are jointly updated in an iterative manner. The applicability of the proposed approach is illustrated by evaluating its performance on different challenging tasks: face recognition across pose, illumination and resolution, heterogeneous face recognition and cross view action recognition. Extensive experiments on five datasets namely, CMU-PIE, Multi-PIE, ChokePoint, HFB and IXMAS datasets and comparisons with several state-of-the-art approaches show the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A photonic crystal nanolaser consisting of only the shift of two lattice points was fabricated by HJ/Xe inductively coupled plasma etching. The room temperature lasing was observed by photopumping. The three-dimensional finite-difference time-domain calculation showed that the lasing mode has small modal volume close to (lambda/2n)(3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado elaborado no Laboratório de Engenharia Civil (LNEC) para obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação ente o ISEL e o LNEC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de Cooperação entre o ISEL e o LNEC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les restriccions reals quantificades (QRC) formen un formalisme matemàtic utilitzat per modelar un gran nombre de problemes físics dins els quals intervenen sistemes d'equacions no-lineals sobre variables reals, algunes de les quals podent ésser quantificades. Els QRCs apareixen en nombrosos contextos, com l'Enginyeria de Control o la Biologia. La resolució de QRCs és un domini de recerca molt actiu dins el qual es proposen dos enfocaments diferents: l'eliminació simbòlica de quantificadors i els mètodes aproximatius. Tot i això, la resolució de problemes de grans dimensions i del cas general, resten encara problemes oberts. Aquesta tesi proposa una nova metodologia aproximativa basada en l'Anàlisi Intervalar Modal, una teoria matemàtica que permet resoldre problemes en els quals intervenen quantificadors lògics sobre variables reals. Finalment, dues aplicacions a l'Enginyeria de Control són presentades. La primera fa referència al problema de detecció de fallades i la segona consisteix en un controlador per a un vaixell a vela.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Double three-phase transmission lines are analyzed in this paper using a modal transformation model. The main attribute of this model is the use of a single real transformation matrix based on line geometrical characteristics and the Clarke matrix. Because of this, for any line point, the electrical values can be accessed for phase domain or mode domain using the considered transformation matrix and without convolution methods. For non-transposed symmetrical lines the errors between the model results and the exact modes are insignificant values. The eigenvector and eigenvalue analyses for transposed lines search the similarities among the three analyzed transposition types and the possible simplifications for a non-transposed case.