984 resultados para Modèles ARMA faibles
Resumo:
Research has been undertaken to ascertain the predictability of non-stationary time series using wavelet and Empirical Mode Decomposition (EMD) based time series models. Methods have been developed in the past to decompose a time series into components. Forecasting of these components combined with random component could yield predictions. Using this ideology, wavelet and EMD analyses have been incorporated separately which decomposes a time series into independent orthogonal components with both time and frequency localizations. The component series are fit with specific auto-regressive models to obtain forecasts which are later combined to obtain the actual predictions. Four non-stationary streamflow sites (USGS data resources) of monthly total volumes and two non-stationary gridded rainfall sites (IMD) of monthly total rainfall are considered for the study. The predictability is checked for six and twelve months ahead forecasts across both the methodologies. Based on performance measures, it is observed that wavelet based method has better prediction capabilities over EMD based method despite some of the limitations of time series methods and the manner in which decomposition takes place. Finally, the study concludes that the wavelet based time series algorithm can be used to model events such as droughts with reasonable accuracy. Also, some modifications that can be made in the model have been discussed that could extend the scope of applicability to other areas in the field of hydrology. (C) 2013 Elesvier B.V. All rights reserved.
Resumo:
In this paper methods are developed for enhancement and analysis of autoregressive moving average (ARMA) signals observed in additive noise which can be represented as mixtures of heavy-tailed non-Gaussian sources and a Gaussian background component. Such models find application in systems such as atmospheric communications channels or early sound recordings which are prone to intermittent impulse noise. Markov Chain Monte Carlo (MCMC) simulation techniques are applied to the joint problem of signal extraction, model parameter estimation and detection of impulses within a fully Bayesian framework. The algorithms require only simple linear iterations for all of the unknowns, including the MA parameters, which is in contrast with existing MCMC methods for analysis of noise-free ARMA models. The methods are illustrated using synthetic data and noise-degraded sound recordings.
Resumo:
Analisa o pronunciamento do Deputado Mário Covas, em dezembro de 1968, em defesa da imunidade parlamentar e da liberdade de palavra, principais ingredientes dos regimes democráticos. Utilizando as propostas formuladas por Norman Fairclough, Patrick Charaudeau e Tereza Halliday, reconstituem-se elementos caracterizadores da enunciação e os principais recursos discursivos utilizados.
Resumo:
Consultoria Legislativa - Área XVII - Segurança Pública e Defesa Nacional.
Resumo:
Consultoria Legislativa - Área XVII - Segurança Pública e Defesa Nacional.
A palavra como arma : análise do discurso do deputado Mário Covas em defesa da imunidade parlamentar
Resumo:
Questionada em momentos críticos, a imunidade parlamentar é uma das condições essenciais para o bom funcionamento do Legislativo. É isso que se argumenta no pronunciamento do Deputado Mário Covas, de 12 de dezembro de 1968, escolhido por nós para análise por ser um marco na defesa da imunidade parlamentar. O estudo parte de uma leitura do contexto histórico do pronunciamento e de algumas propostas de análise de discurso formuladas por Norman Fairclough, Patrick Charaudeau e, de análise retórica, por Tereza Lúcia Halliday, além da tradição aristotélica. A análise do pronunciamento reconstitui os elementos caracterizadores da enunciação - os antecedentes imediatos, a composição da audiência e o ritual daquela reunião legislativa - e os principais recursos discursivos utilizados - a estrutura do texto, a composição estilística e o ethos do orador. Ao final do trabalho, demonstra-se a importância de garantir a liberdade de palavra, de opiniões e votos, principal ingrediente de qualquer regime democrático.