913 resultados para Mobile robots -- Remote sensing
Resumo:
Our everyday environment is full of text but this rich source of information remains largely inaccessible to mobile robots. In this paper we describe an active text spotting system that uses a small number of wide angle views to locate putative text in the environment and then foveates and zooms onto that text in order to improve the reliability of text recognition. We present extensive experimental results obtained with a pan/tilt/zoom camera and a ROS-based mobile robot operating in an indoor environment.
Resumo:
We introduce a new image-based visual navigation algorithm that allows the Cartesian velocity of a robot to be defined with respect to a set of visually observed features corresponding to previously unseen and unmapped world points. The technique is well suited to mobile robot tasks such as moving along a road or flying over the ground. We describe the algorithm in general form and present detailed simulation results for an aerial robot scenario using a spherical camera and a wide angle perspective camera, and present experimental results for a mobile ground robot.
Resumo:
A Remote Sensing Core Curriculum (RSCC) development project is currently underway. This project is being conducted under the auspices of the National Center for Geographic Information and Analysis (NCGIA). RSCC is an outgrowth of the NCGIA GIS Core Curriculum project. It grew out of discussions begun at NCGIA, Initiative 12 (I-12): 'Integration of Remote Sensing and Geographic Information Systems'. This curriculum development project focuses on providing professors, teachers and instructors in undergraduate and graduate institutions with course materials from experts in specific subject matter for areas use in the class room.
Resumo:
A modular, graphic-oriented Internet browser has been developed to enable non-technical client access to a literal spinning world of information and remotely sensed. The Earth Portal (www.earthportal.net) uses the ManyOne browser (www.manyone.net) to provide engaging point and click views of the Earth fully tessellated with remotely sensed imagery and geospatial data. The ManyOne browser technology use Mozilla with embedded plugins to apply multiple 3-D graphics engines, e.g. ArcGlobe or GeoFusion, that directly link with the open-systems architecture of the geo-spatial infrastructure. This innovation allows for rendering of satellite imagery directly over the Earth's surface and requires no technical training by the web user. Effective use of this global distribution system for the remote sensing community requires a minimal compliance with protocols and standards that have been promoted by NSDI and other open-systems standards organizations.
Resumo:
The Remote Sensing Core Curriculum (RSCC) was initiated in 1993 to meet the demands for a college-level set of resources to enhance the quality of education across national and international campuses. The American Society of Photogrammetry and Remote Sensing adopted the RSCC in 1996 to sustain support of this educational initiative for its membership and collegiate community. A series of volumes, containing lectures, exercises, and data, is being created by expert contributors to address the different technical fields of remote sensing. The RSCC program is designed to operate on the Internet taking full advantage of the World Wide Web (WWW) technology for distance learning. The issues of curriculum development related to the educational setting, with demands on faculty, students, and facilities, is considered to understand the new paradigms for WWW-influenced computer-aided learning. The WWW is shown to be especially appropriate for facilitating remote sensing education with requirements for addressing image data sets and multimedia learning tools. The RSCC is located at http://www.umbc.edu/rscc. The Remote Sensing Core Curriculum (RSCC) was initiated in 1993 to meet the demands for a college-level set of resources to enhance the quality of education across national and international campuses. The American Society of Photogrammetry and Remote Sensing adopted the RSCC in 1996 to sustain support of this educational initiative for its membership and collegiate community. A series of volumes, containing lectures, exercises, and data, is being created by expert contributors to address the different technical fields of remote sensing. The RSCC program is designed to operate on the Internet taking full advantage of the World Wide Web (WWW) technology for distance learning. The issues of curriculum development related to the educational setting, with demands on faculty, students, and facilities, is considered to understand the new paradigms for WWW-influenced computer-aided learning. The WWW is shown to be especially appropriate for facilitating remote sensing education with requirements for addressing image data sets and multimedia learning tools. The RSCC is located at http://www.umbc.edu/rscc.
Resumo:
A variety of sustainable development research efforts and related activities are attempting to reconcile the issues of conserving our natural resources without limiting economic motivation while also improving our social equity and quality of life. Land use/land cover change, occurring on a global scale, is an aggregate of local land use decisions and profoundly impacts our environment. It is therefore the local decision making process that should be the eventual target of many of the ongoing data collection and research efforts which strive toward supporting a sustainable future. Satellite imagery data is a primary source of data upon which to build a core data set for use by researchers in analyzing this global change. A process is necessary to link global change research, utilizing satellite imagery, to the local land use decision making process. One example of this is the NASA-sponsored Regional Data Center (RDC) prototype. The RDC approach is an attempt to integrate science and technology at the community level. The anticipated result of this complex interaction between research and the decision making communities will be realized in the form of long-term benefits to the public.
Resumo:
Consensus was developed by the remote sensing community during the 1980s and early 1990s regarding the need for an organized approach to teaching remote sensing fundamentals for collegiate institutions. Growth of the remote sensing industry might be seriously hampered without concerted efforts to bolster the capacity to teach state-of-the-practice remote sensing theory and practice to the next generation of professionals. A concerted effort of educators, researchers, government, and industry began in 1992 to meet these demands leading to the creation of the Remote Sensing Core Curriculum. The RSCC is currently sustained by cooperative efforts of the ASPRS, ICRSE, NASA, NCGIA, and others in the remote sensing community. Growth of the RSCC into the K-12 community resulted from its Internet teaching foundation that enables comprehensive and response reference links to the whole of the education community.
Resumo:
This paper introduces a minimalistic approach to produce a visual hybrid map of a mobile robot’s working environment. The proposed system uses omnidirectional images along with odometry information to build an initial dense posegraph map. Then a two level hybrid map is extracted from the dense graph. The hybrid map consists of global and local levels. The global level contains a sparse topological map extracted from the initial graph using a dual clustering approach. The local level contains a spherical view stored at each node of the global level. The spherical views provide both an appearance signature for the nodes, which the robot uses to localize itself in the environment, and heading information when the robot uses the map for visual navigation. In order to show the usefulness of the map, an experiment was conducted where the map was used for multiple visual navigation tasks inside an office workplace.
Resumo:
The effect of temperature on childhood pneumonia in subtropical regions is largely unknown so far. This study examined the impact of temperature on childhood pneumonia in Brisbane, Australia. A quasi-Poisson generalized linear model combined with a distributed lag non linear model was used to quantify the main effect of temperature on emergency department visits (EDVs) for childhood pneumonia in Brisbane from 2001 to 2010. The model residuals were checked to identify added effects due to heat waves or cold spells. Both high and low temperatures were associated with an increase in EDVs for childhood pneumonia. Children aged 2–5 years, and female children were particularly vulnerable to the impacts of heat and cold, and Indigenous children were sensitive to heat. Heat waves and cold spells had significant added effects on childhood pneumonia, and the magnitude of these effects increased with intensity and duration. There were changes over time in both the main and added effects of temperature on childhood pneumonia. Children, especially those female and Indigenous, should be particularly protected from extreme temperatures. Future development of early warning systems should take the change over time in the impact of temperature on children’s health into account.
Resumo:
"This work considers a mobile service robot which uses an appearance-based representation of its workplace as a map, where the current view and the map are used to estimate the current position in the environment. Due to the nature of real-world environments such as houses and offices, where the appearance keeps changing, the internal representation may become out of date after some time. To solve this problem the robot needs to be able to adapt its internal representation continually to the changes in the environment. This paper presents a method for creating an adaptive map for long-term appearance-based localization of a mobile robot using long-term and short-term memory concepts, with omni-directional vision as the external sensor."--publisher website
Resumo:
We present a framework and first set of simulations for evolving a language for communicating about space. The framework comprises two components: (1) An established mobile robot platform, RatSLAM, which has a "brain" architecture based on rodent hippocampus with the ability to integrate visual and odometric cues to create internal maps of its environment. (2) A language learning system based on a neural network architecture that has been designed and implemented with the ability to evolve generalizable languages which can be learned by naive learners. A study using visual scenes and internal maps streamed from the simulated world of the robots to evolve languages is presented. This study investigated the structure of the evolved languages showing that with these inputs, expressive languages can effectively categorize the world. Ongoing studies are extending these investigations to evolve languages that use the full power of the robots representations in populations of agents.
Resumo:
Sensor networks for environmental monitoring present enormous benefits to the community and society as a whole. Currently there is a need for low cost, compact, solar powered sensors suitable for deployment in rural areas. The purpose of this research is to develop both a ground based wireless sensor network and data collection using unmanned aerial vehicles. The ground based sensor system is capable of measuring environmental data such as temperature or air quality using cost effective low power sensors. The sensor will be configured such that its data is stored on an ATMega16 microcontroller which will have the capability of communicating with a UAV flying overhead using UAV communication protocols. The data is then either sent to the ground in real time or stored on the UAV using a microcontroller until it lands or is close enough to enable the transmission of data to the ground station.
Resumo:
This technical report describes a Light Detection and Ranging (LiDAR) augmented optimal path planning at low level flight methodology for remote sensing and sampling Unmanned Aerial Vehicles (UAV). The UAV is used to perform remote air sampling and data acquisition from a network of sensors on the ground. The data that contains information on the terrain is in the form of a 3D point clouds maps is processed by the algorithms to find an optimal path. The results show that the method and algorithm are able to use the LiDAR data to avoid obstacles when planning a path from a start to a target point. The report compares the performance of the method as the resolution of the LIDAR map is increased and when a Digital Elevation Model (DEM) is included. From a practical point of view, the optimal path plan is loaded and works seemingly with the UAV ground station and also shows the UAV ground station software augmented with more accurate LIDAR data.