768 resultados para Mobile communication systems
Resumo:
A common and practical paradigm in cooperative communication systems is the use of a dynamically selected `best' relay to decode and forward information from a source to a destination. Such systems use two phases - a relay selection phase, in which the system uses transmission time and energy to select the best relay, and a data transmission phase, in which it uses the spatial diversity benefits of selection to transmit data. In this paper, we derive closed-form expressions for the overall throughput and energy consumption, and study the time and energy trade-off between the selection and data transmission phases. To this end, we analyze a baseline non-adaptive system and several adaptive systems that adapt the selection phase, relay transmission power, or transmission time. Our results show that while selection yields significant benefits, the selection phase's time and energy overhead can be significant. In fact, at the optimal point, the selection can be far from perfect, and depends on the number of relays and the mode of adaptation. The results also provide guidelines about the optimal system operating point for different modes of adaptation. The analysis also sheds new insights on the fast splitting-based algorithm considered in this paper for relay selection.
Resumo:
Access control is an important component in the security of communication systems. While cryptography has rightfully been a significant component in the design of large scale communication systems, its relation to access control, especially its complementarity, has not often been brought out in full. With the wide availability of SELinux, a comprehensive model of access control has all the more become important. In many large scale systems, access control and trust management have become important components in the design. In survivable systems, models of group communication systems may have to be integrated with access control models. In this paper, we discuss the problem of integrating various formalisms often encountered in large scale communication systems, especially in connection with dynamic access control policies as well as trust management
Resumo:
This report summarizes the presentations and discussions conducted during the symposium, which was held under the aegis of the International Union of Theoretical and Applied Mechanics during 23-27 January 2012 in Bangalore, India. (C) 2013 AIP Publishing LLC.
Resumo:
We consider optimal average power allocation policies in a wireless channel in the presence of individual delay constraints on the transmitted packets. Power is consumed in transmission of data only. We consider the case when the power used in transmission is a linear function of the data transmitted. The transmission channel may experience multipath fading. We have developed a computationally efficient online algorithm, when there is same hard delay constraint for all packets. Later on, we generalize it to the case when there are multiple real time streams with different hard deadline constraints. Our algorithm uses linear programming and has very low complexity.
Resumo:
We consider near-optimal policies for a single user transmitting on a wireless channel which minimize average queue length under average power constraint. The power is consumed in transmission of data only. We consider the case when the power used in transmission is a linear function of the data transmitted. The transmission channel may experience multipath fading. Later, we also extend these results to the multiuser case. We show that our policies can be used in a system with energy harvesting sources at the transmitter. Next we consider data users which require minimum rate guarantees. Finally we consider the system which has both data and real time users. Our policies have low computational complexity, closed form expression for mean delays and require only the mean arrival rate with no queue length information.
Resumo:
Network information theory and channels with memory are two important but difficult frontiers of information theory. In this two-parted dissertation, we study these two areas, each comprising one part. For the first area we study the so-called entropy vectors via finite group theory, and the network codes constructed from finite groups. In particular, we identify the smallest finite group that violates the Ingleton inequality, an inequality respected by all linear network codes, but not satisfied by all entropy vectors. Based on the analysis of this group we generalize it to several families of Ingleton-violating groups, which may be used to design good network codes. Regarding that aspect, we study the network codes constructed with finite groups, and especially show that linear network codes are embedded in the group network codes constructed with these Ingleton-violating families. Furthermore, such codes are strictly more powerful than linear network codes, as they are able to violate the Ingleton inequality while linear network codes cannot. For the second area, we study the impact of memory to the channel capacity through a novel communication system: the energy harvesting channel. Different from traditional communication systems, the transmitter of an energy harvesting channel is powered by an exogenous energy harvesting device and a finite-sized battery. As a consequence, each time the system can only transmit a symbol whose energy consumption is no more than the energy currently available. This new type of power supply introduces an unprecedented input constraint for the channel, which is random, instantaneous, and has memory. Furthermore, naturally, the energy harvesting process is observed causally at the transmitter, but no such information is provided to the receiver. Both of these features pose great challenges for the analysis of the channel capacity. In this work we use techniques from channels with side information, and finite state channels, to obtain lower and upper bounds of the energy harvesting channel. In particular, we study the stationarity and ergodicity conditions of a surrogate channel to compute and optimize the achievable rates for the original channel. In addition, for practical code design of the system we study the pairwise error probabilities of the input sequences.
Resumo:
Dependence of performances of non-line-of-sight (NLOS) solar-blind ultraviolet (UV) communication systems on atmosphere visibility is investigated numerically by correlating the propagation of UV radiation with the visibility. A simplified solar-blind UV atmospheric propagation model is introduced, and the NLOS UV communication system model is constituted based on the single scattering assumption. Using the model, numerical simulation is conducted for two typical geometry configurations and different modulation formats. The results indicate that the performance of the NLOS UV communication system is insensitive to variation of visibility in quite a large range, and deteriorates significantly only in very low-visibility weather, and is also dependent on the geometry configuration of the system. The results also show that the pulse position modulation (PPM) is preferable due to its high-power efficiency to improve the system performance. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
This paper proposes a high current impedance matching method for narrowband power-line communication (NPLC) systems. The impedance of the power-line channel is time and location variant; therefore, coupling circuitry and the channel are not usually matched. This not only results in poor signal integrity at the receiving end, but also leads to a higher transmission power requirement to secure the communication process. To offset this negative effect, a high-current adaptive impedance circuit to enable impedance matching in power-line networks is reported. The approach taken is to match the channel impedance of N-PLC systems is based on the General Impedance Converter (GIC). In order to achieve high current a special coupler in which the inductive impedance can be altered by adjusting a microcontroller controlled digital resistor is demonstrated. It is shown that the coupler works well with heavy load current in power line networks. It works in both low and high transmitting current modes, a current as high as 760 mA has been obtained. Besides, compared with other adaptive impedance couplers, the advantages include higher matching resolution and a simple control interface. Experimental results are presented to demonstrate the operation of the coupler. © 2011 IEEE.
Resumo:
The feasibility of using AlGaInAs lasers for high-speed modulation at high temperatures was evaluated and compared with performance of GaInAsP devices. Both drift-diffusion and rate equation simulation were involved so that the temperature dependence of material parameters was found in terms of overall dynamic performance. Differential gain was estimated by means of drift-diffusion simulations.
Resumo:
The K-best detector is considered as a promising technique in the MIMO-OFDM detection because of its good performance and low complexity. In this paper, a new K-best VLSI architecture is presented. In the proposed architecture, the metric computation units (MCUs) expand each surviving path only to its partial branches, based on the novel expansion scheme, which can predetermine the branches' ascending order by their local distances. Then a distributed sorter sorts out the new K surviving paths from the expanded branches in pipelines. Compared to the conventional K-best scheme, the proposed architecture can approximately reduce fundamental operations by 50% and 75% for the 16-QAM and the 64-QAM cases, respectively, and, consequently, lower the demand on the hardware resource significantly. Simulation results prove that the proposed architecture can achieve a performance very similar to conventional K-best detectors. Hence, it is an efficient solution to the K-best detector's VLSI implementation for high-throughput MIMO-OFDM systems.
Resumo:
High-speed free-space optical communication systems have recently used fiber-optical components. The coupling efficiency with which the received laser beam can be coupled into a single-mode fiber is noticeably limited by atmospheric turbulence due to the degradation of its spatial coherence. Fortunately, adaptive optics (AO) can alleviate this limitation by partially correcting the turbulence-distorted wavefront. The coupling efficiency improvement provided by Zernike modal AO correction is numerically evaluated. It is found that the first 3-20 corrected polynomials can considerably improve the fiber-coupling efficiency. The improvement brought by AO is compared with that brought by a coherent fiber array. Finally, a hybrid technique that integrates AO and a coherent fiber array is proposed. Results show that the hybrid technique outperforms each of the two above-mentioned techniques. (C) 2009 Elsevier GmbH. All rights reserved.