784 resultados para Mobile Applications for Android
Resumo:
L'obiettivo di questo lavoro è effettuare un'analisi del modello di programmazione proposto da Android. L'attenzione verrà posta, in particolare, su quali meccanismi vengano forniti per la gestione di eventi asincroni generati dal sistema, allo scopo di notificare cambiamenti del contesto in cui si sta operando: dal modo in cui vengono intercettati, a come risulta possibile modificare il comportamento dell'applicazione, in reazione alle nuove informazioni acquisite. Si valuteranno gli elementi di novità introdotti nelle API di Android, in relazione ai classici mezzi disponibili nella programmazione standard in Java, atti a risolvere una nuova categoria di problematiche dovute alla natura context-aware delle applicazioni. Sarà effettuata anche un'analisi più generale della qualità del modello proposto, in termini di estensibilità e modularità del codice; per fare ciò, si prenderà in esame l'applicazione SMS Backup+ come caso di studio e si proporranno delle possibili estensioni per verificarne la fattibilità.
Resumo:
This paper proposes a low cost and complexity indoor location and navigation system using visible light communications and a mobile device. LED lamps work as beacons transmitting an identifier code so a mobile device can know its location. Experimental designs for transmitter and receiver interfaces are presented and potential applications are discussed.
Resumo:
In recent years, many experimental and theoretical research groups worldwide have actively worked on demonstrating the use of liquid crystals (LCs) as adaptive lenses for image generation, waveform shaping, and non-mechanical focusing applications. In particular, important achievements have concerned the development of alternative solutions for 3D vision. This work focuses on the design and evaluation of the electro-optic response of a LC-based 2D/3D autostereoscopic display prototype. A strategy for achieving 2D/3D vision has been implemented with a cylindrical LC lens array placed in front of a display; this array acts as a lenticular sheet with a tunable focal length by electrically controlling the birefringence. The performance of the 2D/3D device was evaluated in terms of the angular luminance, image deflection, crosstalk, and 3D contrast within a simulated environment. These measurements were performed with characterization equipment for autostereoscopic 3D displays (angular resolution of 0.03 ).
Resumo:
Usability guidelines are a useful tool for the developers to improve interaction with systems. It includes knowledge of different disciplines related to usability and provides solutions and best practices to achieve the objectives of usability. Heuristic evaluation is one of the methods most widely used to evaluate and user interfaces. The objective of this study is to enrich the process of heuristic evaluation with the design guidelines focusing it on the evaluation of applications for mobile devices. As well as generate a homogeneous classification of guidelines content, in order to help that from design and development process, be included solutions and good practices provided by the guidelines. In order to achieve the objectives of this work, it is provides a method for generating heuristics for mobile applications, with which four applications were evaluated, and a web tool has also been developed that allows access to the content of the guidelines using the homogeneous classification of guidelines content. The results showed the ease and utility of performing heuristic evaluations using a set of heuristics focused on mobile applications.
Resumo:
Nowadays there is almost no crime committed without a trace of digital evidence, and since the advanced functionality of mobile devices today can be exploited to assist in crime, the need for mobile forensics is imperative. Many of the mobile applications available today, including internet browsers, will request the user’s permission to access their current location when in use. This geolocation data is subsequently stored and managed by that application's underlying database files. If recovered from a device during a forensic investigation, such GPS evidence and track points could hold major evidentiary value for a case. The aim of this paper is to examine and compare to what extent geolocation data is available from the iOS and Android operating systems. We focus particularly on geolocation data recovered from internet browsing applications, comparing the native Safari and Browser apps with Google Chrome, downloaded on to both platforms. All browsers were used over a period of several days at various locations to generate comparable test data for analysis. Results show considerable differences not only in the storage locations and formats, but also in the amount of geolocation data stored by different browsers and on different operating systems.
Resumo:
Mobile Cloud Computing promises to overcome the physical limitations of mobile devices by executing demanding mobile applications on cloud infrastructure. In practice, implementing this paradigm is difficult; network disconnection often occurs, bandwidth may be limited, and a large power draw is required from the battery, resulting in a poor user experience. This thesis presents a mobile cloud middleware solution, Context Aware Mobile Cloud Services (CAMCS), which provides cloudbased services to mobile devices, in a disconnected fashion. An integrated user experience is delivered by designing for anticipated network disconnection, and low data transfer requirements. CAMCS achieves this by means of the Cloud Personal Assistant (CPA); each user of CAMCS is assigned their own CPA, which can complete user-assigned tasks, received as descriptions from the mobile device, by using existing cloud services. Service execution is personalised to the user's situation with contextual data, and task execution results are stored with the CPA until the user can connect with his/her mobile device to obtain the results. Requirements for an integrated user experience are outlined, along with the design and implementation of CAMCS. The operation of CAMCS and CPAs with cloud-based services is presented, specifically in terms of service description, discovery, and task execution. The use of contextual awareness to personalise service discovery and service consumption to the user's situation is also presented. Resource management by CAMCS is also studied, and compared with existing solutions. Additional application models that can be provided by CAMCS are also presented. Evaluation is performed with CAMCS deployed on the Amazon EC2 cloud. The resource usage of the CAMCS Client, running on Android-based mobile devices, is also evaluated. A user study with volunteers using CAMCS on their own mobile devices is also presented. Results show that CAMCS meets the requirements outlined for an integrated user experience.
Resumo:
In a road network, cyclists are the group exposed to the maximum amount of risk. Route choice of a cyclist is often based on level of expertise, perceived or actual road risks, personal decisions, weather conditions and a number of other factors. Consequently, cycling tends to be the only significant travel mode where optimised route choice is not based on least-path or least-time. This paper presents an Android platform based mobile-app for personalised route planning of cyclists in Dublin. The mobile-app, apart from its immediate advantage to the cyclists, acts as the departure point for a number of research projects and aids in establishing some critical calibration values for the cycling network in Dublin.
Resumo:
This research presents a fast algorithm for projected support vector machines (PSVM) by selecting a basis vector set (BVS) for the kernel-induced feature space, the training points are projected onto the subspace spanned by the selected BVS. A standard linear support vector machine (SVM) is then produced in the subspace with the projected training points. As the dimension of the subspace is determined by the size of the selected basis vector set, the size of the produced SVM expansion can be specified. A two-stage algorithm is derived which selects and refines the basis vector set achieving a locally optimal model. The model expansion coefficients and bias are updated recursively for increase and decrease in the basis set and support vector set. The condition for a point to be classed as outside the current basis vector and selected as a new basis vector is derived and embedded in the recursive procedure. This guarantees the linear independence of the produced basis set. The proposed algorithm is tested and compared with an existing sparse primal SVM (SpSVM) and a standard SVM (LibSVM) on seven public benchmark classification problems. Our new algorithm is designed for use in the application area of human activity recognition using smart devices and embedded sensors where their sometimes limited memory and processing resources must be exploited to the full and the more robust and accurate the classification the more satisfied the user. Experimental results demonstrate the effectiveness and efficiency of the proposed algorithm. This work builds upon a previously published algorithm specifically created for activity recognition within mobile applications for the EU Haptimap project [1]. The algorithms detailed in this paper are more memory and resource efficient making them suitable for use with bigger data sets and more easily trained SVMs.
Resumo:
In order to protect user privacy on mobile devices, an event-driven implicit authentication scheme is proposed in this paper. Several methods of utilizing the scheme for recognizing legitimate user behavior are investigated. The investigated methods compute an aggregate score and a threshold in real-time to determine the trust level of the current user using real data derived from user interaction with the device. The proposed scheme is designed to: operate completely in the background, require minimal training period, enable high user recognition rate for implicit authentication, and prompt detection of abnormal activity that can be used to trigger explicitly authenticated access control. In this paper, we investigate threshold computation through standard deviation and EWMA (exponentially weighted moving average) based algorithms. The result of extensive experiments on user data collected over a period of several weeks from an Android phone indicates that our proposed approach is feasible and effective for lightweight real-time implicit authentication on mobile smartphones.
Resumo:
Mobile applications are becoming increasingly more complex and making heavier demands on local system resources. Moreover, mobile systems are nowadays more open, allowing users to add more and more applications, including third-party developed ones. In this perspective, it is increasingly expected that users will want to execute in their devices applications which supersede currently available resources. It is therefore important to provide frameworks which allow applications to benefit from resources available on other nodes, capable of migrating some or all of its services to other nodes, depending on the user needs. These requirements are even more stringent when users want to execute Quality of Service (QoS) aware applications, such as voice or video. The required resources to guarantee the QoS levels demanded by an application can vary with time, and consequently, applications should be able to reconfigure themselves. This paper proposes a QoS-aware service-based framework able to support distributed, migration-capable, QoS-enabled applications on top of the Android Operating system.
Resumo:
Trabalho de projeto apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Publicidade e Marketing.
Resumo:
Det mobila operativsystemet Android är idag ett ganska dominerande operativsystem på den mobila marknaden dels på grund av sin öppenhet men också på grund av att tillgängligheten är stor i och med både billiga och dyra telefoner finns att tillgå. Men idag har Android inget fördefinierat designmönster vilket leder till att varje utvecklare får bestämma själv vad som ska användas, vilket ibland kan leda till onödigt komplex kod i applikationerna som sen blir svårtestad och svårhanterlig. Detta arbete ämnar jämföra två designmönster, Passive Model View Controller (PMVC) och Model View View-Model (MVVM), för att se vilket designmönster som blir minst komplext med hjälp av att räkna fram mätvärden med hjälp av Cyclomatic Complexity Number (CCN). Studien är gjord utifrån arbetssättet Design & Creation och ämnar bidra med: kunskap om vilket mönster man bör välja, samt om CCN kan peka ut vilka delar i en applikation som kommer att ta mer eller mindre lång tid att testa. Under studiens gång tog vi även fram skillnader på om man anväder sig av den så kallade Single Responsibilyt Principle (SRP) eller inte. Detta för att se om separerade vyer gör någon skillnad i applikationernas komplexitet. I slutändan så visar studien på att komplexiteten i små applikationer är väldigt likvärdig, men att man även på små applikationer kan se skillnad på hur komplex koden är men också att kodkomplexitet på metodnivå kan ge riktlinjer för testfall.