950 resultados para Mixed models
Resumo:
The objective of this study was to evaluate the use of probit and logit link functions for the genetic evaluation of early pregnancy using simulated data. The following simulation/analysis structures were constructed: logit/logit, logit/probit, probit/logit, and probit/probit. The percentages of precocious females were 5, 10, 15, 20, 25 and 30% and were adjusted based on a change in the mean of the latent variable. The parametric heritability (h²) was 0.40. Simulation and genetic evaluation were implemented in the R software. Heritability estimates (ĥ²) were compared with h² using the mean squared error. Pearson correlations between predicted and true breeding values and the percentage of coincidence between true and predicted ranking, considering the 10% of bulls with the highest breeding values (TOP10) were calculated. The mean ĥ² values were under- and overestimated for all percentages of precocious females when logit/probit and probit/logit models used. In addition, the mean squared errors of these models were high when compared with those obtained with the probit/probit and logit/logit models. Considering ĥ², probit/probit and logit/logit were also superior to logit/probit and probit/logit, providing values close to the parametric heritability. Logit/probit and probit/logit presented low Pearson correlations, whereas the correlations obtained with probit/probit and logit/logit ranged from moderate to high. With respect to the TOP10 bulls, logit/probit and probit/logit presented much lower percentages than probit/probit and logit/logit. The genetic parameter estimates and predictions of breeding values of the animals obtained with the logit/logit and probit/probit models were similar. In contrast, the results obtained with probit/logit and logit/probit were not satisfactory. There is need to compare the estimation and prediction ability of logit and probit link functions.
Resumo:
Linear mixed effects models are frequently used to analyse longitudinal data, due to their flexibility in modelling the covariance structure between and within observations. Further, it is easy to deal with unbalanced data, either with respect to the number of observations per subject or per time period, and with varying time intervals between observations. In most applications of mixed models to biological sciences, a normal distribution is assumed both for the random effects and for the residuals. This, however, makes inferences vulnerable to the presence of outliers. Here, linear mixed models employing thick-tailed distributions for robust inferences in longitudinal data analysis are described. Specific distributions discussed include the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted, and the Gibbs sampler and the Metropolis-Hastings algorithms are used to carry out the posterior analyses. An example with data on orthodontic distance growth in children is discussed to illustrate the methodology. Analyses based on either the Student-t distribution or on the usual Gaussian assumption are contrasted. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process for modelling distributions of the random effects and of residuals in linear mixed models, and the MCMC implementation allows the computations to be performed in a flexible manner.
Resumo:
Linear mixed effects models have been widely used in analysis of data where responses are clustered around some random effects, so it is not reasonable to assume independence between observations in the same cluster. In most biological applications, it is assumed that the distributions of the random effects and of the residuals are Gaussian. This makes inferences vulnerable to the presence of outliers. Here, linear mixed effects models with normal/independent residual distributions for robust inferences are described. Specific distributions examined include univariate and multivariate versions of the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted and Markov chain Monte Carlo is used to carry out the posterior analysis. The procedures are illustrated using birth weight data on rats in a texicological experiment. Results from the Gaussian and robust models are contrasted, and it is shown how the implementation can be used for outlier detection. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process in linear mixed models, and they are easily implemented using data augmentation and MCMC techniques.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Adjusting autoregressive and mixed models to growth data fits discontinuous functions, which makes it difficult to determine critical points. In this study we propose a new approach to determine the critical stability point of cattle growth using a first-order autoregressive model and a mixed model with random asymptote, using the deterministic portion of the models. Three functions were compared: logistic, Gompertz, and Richards. The Richards autoregressive model yielded the best fit, but the critical growth values were adjusted very early, and for this purpose the Gompertz model was more appropriate.
Resumo:
In this paper we extend semiparametric mixed linear models with normal errors to elliptical errors in order to permit distributions with heavier and lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum penalized likelihood estimates (MPLEs) which appear to be robust against outlying observations in the sense of the Mahalanobis distance. A reweighed iterative process based on the back-fitting method is proposed for the parameter estimation and the local influence curvatures are derived under some usual perturbation schemes to study the sensitivity of the MPLEs. Two motivating examples preliminarily analyzed under normal errors are reanalyzed considering some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.
Resumo:
Generalized linear mixed models (GLMMs) provide an elegant framework for the analysis of correlated data. Due to the non-closed form of the likelihood, GLMMs are often fit by computational procedures like penalized quasi-likelihood (PQL). Special cases of these models are generalized linear models (GLMs), which are often fit using algorithms like iterative weighted least squares (IWLS). High computational costs and memory space constraints often make it difficult to apply these iterative procedures to data sets with very large number of cases. This paper proposes a computationally efficient strategy based on the Gauss-Seidel algorithm that iteratively fits sub-models of the GLMM to subsetted versions of the data. Additional gains in efficiency are achieved for Poisson models, commonly used in disease mapping problems, because of their special collapsibility property which allows data reduction through summaries. Convergence of the proposed iterative procedure is guaranteed for canonical link functions. The strategy is applied to investigate the relationship between ischemic heart disease, socioeconomic status and age/gender category in New South Wales, Australia, based on outcome data consisting of approximately 33 million records. A simulation study demonstrates the algorithm's reliability in analyzing a data set with 12 million records for a (non-collapsible) logistic regression model.
Resumo:
In linear mixed models, model selection frequently includes the selection of random effects. Two versions of the Akaike information criterion (AIC) have been used, based either on the marginal or on the conditional distribution. We show that the marginal AIC is no longer an asymptotically unbiased estimator of the Akaike information, and in fact favours smaller models without random effects. For the conditional AIC, we show that ignoring estimation uncertainty in the random effects covariance matrix, as is common practice, induces a bias that leads to the selection of any random effect not predicted to be exactly zero. We derive an analytic representation of a corrected version of the conditional AIC, which avoids the high computational cost and imprecision of available numerical approximations. An implementation in an R package is provided. All theoretical results are illustrated in simulation studies, and their impact in practice is investigated in an analysis of childhood malnutrition in Zambia.
Resumo:
Short-run forecasting of electricity prices has become necessary for power generation unit schedule, since it is the basis of every profit maximization strategy. In this article a new and very easy method to compute accurate forecasts for electricity prices using mixed models is proposed. The main idea is to develop an efficient tool for one-step-ahead forecasting in the future, combining several prediction methods for which forecasting performance has been checked and compared for a span of several years. Also as a novelty, the 24 hourly time series has been modelled separately, instead of the complete time series of the prices. This allows one to take advantage of the homogeneity of these 24 time series. The purpose of this paper is to select the model that leads to smaller prediction errors and to obtain the appropriate length of time to use for forecasting. These results have been obtained by means of a computational experiment. A mixed model which combines the advantages of the two new models discussed is proposed. Some numerical results for the Spanish market are shown, but this new methodology can be applied to other electricity markets as well
Resumo:
In this paper, we obtain sharp asymptotic formulas with error estimates for the Mellin con- volution of functions de ned on (0;1), and use these formulas to characterize the asymptotic behavior of marginal distribution densities of stock price processes in mixed stochastic models. Special examples of mixed models are jump-di usion models and stochastic volatility models with jumps. We apply our general results to the Heston model with double exponential jumps, and make a detailed analysis of the asymptotic behavior of the stock price density, the call option pricing function, and the implied volatility in this model. We also obtain similar results for the Heston model with jumps distributed according to the NIG law.
Resumo:
The issue of assessing variance components is essential in deciding on the inclusion of random effects in the context of mixed models. In this work we discuss this problem by supposing nonlinear elliptical models for correlated data by using the score-type test proposed in Silvapulle and Silvapulle (1995). Being asymptotically equivalent to the likelihood ratio test and only requiring the estimation under the null hypothesis, this test provides a fairly easy computable alternative for assessing one-sided hypotheses in the context of the marginal model. Taking into account the possible non-normal distribution, we assume that the joint distribution of the response variable and the random effects lies in the elliptical class, which includes light-tailed and heavy-tailed distributions such as Student-t, power exponential, logistic, generalized Student-t, generalized logistic, contaminated normal, and the normal itself, among others. We compare the sensitivity of the score-type test under normal, Student-t and power exponential models for the kinetics data set discussed in Vonesh and Carter (1992) and fitted using the model presented in Russo et al. (2009). Also, a simulation study is performed to analyze the consequences of the kurtosis misspecification.
Resumo:
This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.