972 resultados para Mining applications
Resumo:
"Period of performance: September, l968- December, 1973."
Resumo:
Kalman inverse filtering is used to develop a methodology for real-time estimation of forces acting at the interface between tyre and road on large off-highway mining trucks. The system model formulated is capable of estimating the three components of tyre-force at each wheel of the truck using a practical set of measurements and inputs. Good tracking is obtained by the estimated tyre-forces when compared with those simulated by an ADAMS virtual-truck model. A sensitivity analysis determines the susceptibility of the tyre-force estimates to uncertainties in the truck's parameters.
Resumo:
Stochastic simulation is a recognised tool for quantifying the spatial distribution of geological uncertainty and risk in earth science and engineering. Metals mining is an area where simulation technologies are extensively used; however, applications in the coal mining industry have been limited. This is particularly due to the lack of a systematic demonstration illustrating the capabilities these techniques have in problem solving in coal mining. This paper presents two broad and technically distinct areas of applications in coal mining. The first deals with the use of simulation in the quantification of uncertainty in coal seam attributes and risk assessment to assist coal resource classification, and drillhole spacing optimisation to meet pre-specified risk levels at a required confidence. The second application presents the use of stochastic simulation in the quantification of fault risk, an area of particular interest to underground coal mining, and documents the performance of the approach. The examples presented demonstrate the advantages and positive contribution stochastic simulation approaches bring to the coal mining industry
Resumo:
Case-based Reasoning's (CBR) origins were stimulated by a desire to understand how people remember information and are in turn reminded of information, and that subsequently it was recognized that people commonly solve problems by remembering how they solved similar problems in the past. Thus CBR became an appropriate way to find out the most suitable solution method for a new problem based on the old methods for the same or even similar problems. The research highlights how to use CBR to aid biologists in finding the best method to cryo preserve algae. The study found CBR could be used successfully to find the similarity percentage between the new algae and old cases in the case base. The prediction result showed approximately 93.75% accuracy, which proves the CBR system can offer appropriate recommendations for most situations. © 2011 IEEE.
Resumo:
An Automatic Vehicle Location (AVL) system is a computer-based vehicle tracking system that is capable of determining a vehicle's location in real time. As a major technology of the Advanced Public Transportation System (APTS), AVL systems have been widely deployed by transit agencies for purposes such as real-time operation monitoring, computer-aided dispatching, and arrival time prediction. AVL systems make a large amount of transit performance data available that are valuable for transit performance management and planning purposes. However, the difficulties of extracting useful information from the huge spatial-temporal database have hindered off-line applications of the AVL data. ^ In this study, a data mining process, including data integration, cluster analysis, and multiple regression, is proposed. The AVL-generated data are first integrated into a Geographic Information System (GIS) platform. The model-based cluster method is employed to investigate the spatial and temporal patterns of transit travel speeds, which may be easily translated into travel time. The transit speed variations along the route segments are identified. Transit service periods such as morning peak, mid-day, afternoon peak, and evening periods are determined based on analyses of transit travel speed variations for different times of day. The seasonal patterns of transit performance are investigated by using the analysis of variance (ANOVA). Travel speed models based on the clustered time-of-day intervals are developed using important factors identified as having significant effects on speed for different time-of-day periods. ^ It has been found that transit performance varied from different seasons and different time-of-day periods. The geographic location of a transit route segment also plays a role in the variation of the transit performance. The results of this research indicate that advanced data mining techniques have good potential in providing automated techniques of assisting transit agencies in service planning, scheduling, and operations control. ^
MINING AND VERIFICATION OF TEMPORAL EVENTS WITH APPLICATIONS IN COMPUTER MICRO-ARCHITECTURE RESEARCH
Resumo:
Computer simulation programs are essential tools for scientists and engineers to understand a particular system of interest. As expected, the complexity of the software increases with the depth of the model used. In addition to the exigent demands of software engineering, verification of simulation programs is especially challenging because the models represented are complex and ridden with unknowns that will be discovered by developers in an iterative process. To manage such complexity, advanced verification techniques for continually matching the intended model to the implemented model are necessary. Therefore, the main goal of this research work is to design a useful verification and validation framework that is able to identify model representation errors and is applicable to generic simulators. The framework that was developed and implemented consists of two parts. The first part is First-Order Logic Constraint Specification Language (FOLCSL) that enables users to specify the invariants of a model under consideration. From the first-order logic specification, the FOLCSL translator automatically synthesizes a verification program that reads the event trace generated by a simulator and signals whether all invariants are respected. The second part consists of mining the temporal flow of events using a newly developed representation called State Flow Temporal Analysis Graph (SFTAG). While the first part seeks an assurance of implementation correctness by checking that the model invariants hold, the second part derives an extended model of the implementation and hence enables a deeper understanding of what was implemented. The main application studied in this work is the validation of the timing behavior of micro-architecture simulators. The study includes SFTAGs generated for a wide set of benchmark programs and their analysis using several artificial intelligence algorithms. This work improves the computer architecture research and verification processes as shown by the case studies and experiments that have been conducted.
Resumo:
The new technologies for Knowledge Discovery from Databases (KDD) and data mining promise to bring new insights into a voluminous growing amount of biological data. KDD technology is complementary to laboratory experimentation and helps speed up biological research. This article contains an introduction to KDD, a review of data mining tools, and their biological applications. We discuss the domain concepts related to biological data and databases, as well as current KDD and data mining developments in biology.
Resumo:
In spite of their wide application in comminution circuits, hydrocyclones have at least one significant disadvantage in that their operation inherently tends to return the fine denser liberated minerals to the grinding mill. This results in unnecessary overgrinding which adds to the milling cost and can adversely affect the efficiency of downstream processes. In an attempt to solve this problem, a three-product cyclone has been developed at the Julius Kruttschnitt Mineral Research Centre (JKMRC) to generate a second overflow in which the fine dense liberated minerals can be selectively concentrated for further treatment. In this paper, the design and operation of the three-product cyclone are described. The influence of the length of the second vortex finder on the performance of a 150-mm unit treating a mixture of magnetite and silica is investigated. Conventional cyclone tests were also conducted under similar conditions. Using the operational performance data of the three-product and conventional cyclones, it is shown that by optimising the length of the second vortex finder, the amount of fine dense mineral particles that reports to the three-product cyclone underflow can be reduced. In addition, the three-product cyclone can be used to generate middlings stream that may be more suitable for flash flotation than the conventional cyclone underflow, or alternatively, could be classified with a microscreen to separate the valuables from the gangue. At the same time, a fines stream having similar properties to those of the conventional overflow can be obtained. Hence, if the middlings stream was used as feed for flash flotation or microscreening, the fines stream could be used in lieu of the conventional overflow without compromising the feed requirements for the conventional flotation circuit. Some of the other potential applications of the new cyclone are described. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Systems.
Resumo:
The extraction of relevant terms from texts is an extensively researched task in Text- Mining. Relevant terms have been applied in areas such as Information Retrieval or document clustering and classification. However, relevance has a rather fuzzy nature since the classification of some terms as relevant or not relevant is not consensual. For instance, while words such as "president" and "republic" are generally considered relevant by human evaluators, and words like "the" and "or" are not, terms such as "read" and "finish" gather no consensus about their semantic and informativeness. Concepts, on the other hand, have a less fuzzy nature. Therefore, instead of deciding on the relevance of a term during the extraction phase, as most extractors do, I propose to first extract, from texts, what I have called generic concepts (all concepts) and postpone the decision about relevance for downstream applications, accordingly to their needs. For instance, a keyword extractor may assume that the most relevant keywords are the most frequent concepts on the documents. Moreover, most statistical extractors are incapable of extracting single-word and multi-word expressions using the same methodology. These factors led to the development of the ConceptExtractor, a statistical and language-independent methodology which is explained in Part I of this thesis. In Part II, I will show that the automatic extraction of concepts has great applicability. For instance, for the extraction of keywords from documents, using the Tf-Idf metric only on concepts yields better results than using Tf-Idf without concepts, specially for multi-words. In addition, since concepts can be semantically related to other concepts, this allows us to build implicit document descriptors. These applications led to published work. Finally, I will present some work that, although not published yet, is briefly discussed in this document.