912 resultados para Minimal path convexity
Resumo:
Our experiences as Indigenous academics within universities often reflects the experiences we have as Indigenous people in broader society, yet I am still surprised and angered when it is others working in higher education who espouse notions of justice and equity with whom we experience tension and conflict in asserting our rights, values and cultural values. At times it is a constant struggle even when universities have Reconciliation Statements as most of them do now, Indigenous recruitment or employment strategies and university wide anti-racism and anti-discrimination policies and procedures.
Resumo:
In the filed of semantic grid, QoS-based Web service scheduling for workflow optimization is an important problem.However, in semantic and service rich environment like semantic grid, the emergence of context constraints on Web services is very common making the scheduling consider not only quality properties of Web services, but also inter service dependencies which are formed due to the context constraints imposed on Web services. In this paper, we present a repair genetic algorithm, namely minimal-conflict hill-climbing repair genetic algorithm, to address scheduling optimization problems in workflow applications in the presence of domain constraints and inter service dependencies. Experimental results demonstrate the scalability and effectiveness of the genetic algorithm.
Resumo:
Mobile robots are widely used in many industrial fields. Research on path planning for mobile robots is one of the most important aspects in mobile robots research. Path planning for a mobile robot is to find a collision-free route, through the robot’s environment with obstacles, from a specified start location to a desired goal destination while satisfying certain optimization criteria. Most of the existing path planning methods, such as the visibility graph, the cell decomposition, and the potential field are designed with the focus on static environments, in which there are only stationary obstacles. However, in practical systems such as Marine Science Research, Robots in Mining Industry, and RoboCup games, robots usually face dynamic environments, in which both moving and stationary obstacles exist. Because of the complexity of the dynamic environments, research on path planning in the environments with dynamic obstacles is limited. Limited numbers of papers have been published in this area in comparison with hundreds of reports on path planning in stationary environments in the open literature. Recently, a genetic algorithm based approach has been introduced to plan the optimal path for a mobile robot in a dynamic environment with moving obstacles. However, with the increase of the number of the obstacles in the environment, and the changes of the moving speed and direction of the robot and obstacles, the size of the problem to be solved increases sharply. Consequently, the performance of the genetic algorithm based approach deteriorates significantly. This motivates the research of this work. This research develops and implements a simulated annealing algorithm based approach to find the optimal path for a mobile robot in a dynamic environment with moving obstacles. The simulated annealing algorithm is an optimization algorithm similar to the genetic algorithm in principle. However, our investigation and simulations have indicated that the simulated annealing algorithm based approach is simpler and easier to implement. Its performance is also shown to be superior to that of the genetic algorithm based approach in both online and offline processing times as well as in obtaining the optimal solution for path planning of the robot in the dynamic environment. The first step of many path planning methods is to search an initial feasible path for the robot. A commonly used method for searching the initial path is to randomly pick up some vertices of the obstacles in the search space. This is time consuming in both static and dynamic path planning, and has an important impact on the efficiency of the dynamic path planning. This research proposes a heuristic method to search the feasible initial path efficiently. Then, the heuristic method is incorporated into the proposed simulated annealing algorithm based approach for dynamic robot path planning. Simulation experiments have shown that with the incorporation of the heuristic method, the developed simulated annealing algorithm based approach requires much shorter processing time to get the optimal solutions in the dynamic path planning problem. Furthermore, the quality of the solution, as characterized by the length of the planned path, is also improved with the incorporated heuristic method in the simulated annealing based approach for both online and offline path planning.
Resumo:
In the field of semantic grid, QoS-based Web service composition is an important problem. In semantic and service rich environment like semantic grid, the emergence of context constraints on Web services is very common making the composition consider not only QoS properties of Web services, but also inter service dependencies and conflicts which are formed due to the context constraints imposed on Web services. In this paper, we present a repair genetic algorithm, namely minimal-conflict hill-climbing repair genetic algorithm, to address the Web service composition optimization problem in the presence of domain constraints and inter service dependencies and conflicts. Experimental results demonstrate the scalability and effectiveness of the genetic algorithm.
Resumo:
The biomechanical or biophysical principles can be applied to study biological structures in their modern or fossil form. Bone is an important tissue in paleontological studies as it is a commonly preserved element in most fossil vertebrates, and can often allow its microstructures such as lacuna and canaliculi to be studied in detail. In this context, the principles of Fluid Mechanics and Scaling Laws have been previously applied to enhance the understanding of bone microarchitecture and their implications for the evolution of hydraulic structures to transport fluid. It has been shown that the microstructure of bone has evolved to maintain efficient transport between the nutrient supply and cells, the living components of the tissue. Application of the principle of minimal expenditure of energy to this analysis shows that the path distance comprising five or six lamellar regions represents an effective limit for fluid and solute transport between the nutrient supply and cells; beyond this threshold, hydraulic resistance in the network increases and additional energy expenditure is necessary for further transportation. This suggests an optimization of the size of bone’s building blocks (such as osteon or trabecular thickness) to meet the metabolic demand concomitant to minimal expenditure of energy. This biomechanical aspect of bone microstructure is corroborated from the ratio of osteon to Haversian canal diameters and scaling constants of several mammals considered in this study. This aspect of vertebrate bone microstructure and physiology may provide a basis of understanding of the form and function relationship in both extinct and extant taxa.
Resumo:
Background: Apart from promoting physical recovery and assisting in activities of daily living, a major challenge in stroke rehabilitation is to minimize psychosocial morbidity and to promote the reintegration of stroke survivors into their family and community. The identification of key factors influencing long-term outcome are essential in developing more effective rehabilitation measures for reducing stroke-related morbidity. The aim of this study was to test a theoretical model of predictors of participation restriction which included the direct and indirect effects between psychosocial outcomes, physical outcome, and socio-demographic variables at 12 months after stroke.--------- Methods: Data were collected from 188 stroke survivors at 12 months following their discharge from one of the two rehabilitation hospitals in Hong Kong. The settings included patients' homes and residential care facilities. Path analysis was used to test a hypothesized model of participation restriction at 12 months.---------- Results: The path coefficients show functional ability having the largest direct effect on participation restriction (β = 0.51). The results also show that more depressive symptoms (β = -0.27), low state self-esteem (β = 0.20), female gender (β = 0.13), older age (β = -0.11) and living in a residential care facility (β = -0.12) have a direct effect on participation restriction. The explanatory variables accounted for 71% of the variance in explaining participation restriction at 12 months.---------- Conclusion: Identification of stroke survivors at risk of high levels of participation restriction, depressive symptoms and low self-esteem will assist health professionals to devise appropriate rehabilitation interventions that target improving both physical and psychosocial functioning.
Resumo:
In recent years, unmanned aerial vehicles (UAVs) have been widely used in combat, and their potential applications in civil and commercial roles are also receiving considerable attention by industry and the research community. There are numerous published reports of UAVs used in Earth science missions [1], fire-fighting [2], and border security [3] trials, with other speculative deployments, including applications in agriculture, communications, and traffic monitoring. However, none of these UAVs can demonstrate an equivalent level of safety to manned aircraft, particularly in the case of an engine failure, which would require an emergency or forced landing. This may be arguably the main factor that has prevented these UAV trials from becoming full-scale commercial operations, as well as restricted operations of civilian UAVs to only within segregated airspace.
Resumo:
This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.
Resumo:
This paper presents advanced optimization techniques for Mission Path Planning (MPP) of a UAS fitted with a spore trap to detect and monitor spores and plant pathogens. The UAV MPP aims to optimise the mission path planning search and monitoring of spores and plant pathogens that may allow the agricultural sector to be more competitive and more reliable. The UAV will be fitted with an air sampling or spore trap to detect and monitor spores and plant pathogens in remote areas not accessible to current stationary monitor methods. The optimal paths are computed using a Multi-Objective Evolutionary Algorithms (MOEAs). Two types of multi-objective optimisers are compared; the MOEA Non-dominated Sorting Genetic Algorithms II (NSGA-II) and Hybrid Game are implemented to produce a set of optimal collision-free trajectories in three-dimensional environment. The trajectories on a three-dimension terrain, which are generated off-line, are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different position with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of coupling a Hybrid-Game strategy to a MOEA for MPP tasks. The reduction of numerical cost is an important point as the faster the algorithm converges the better the algorithms is for an off-line design and for future on-line decisions of the UAV.
Resumo:
This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.
Resumo:
This thesis aimed to investigate the way in which distance runners modulate their speed in an effort to understand the key processes and determinants of speed selection when encountering hills in natural outdoor environments. One factor which has limited the expansion of knowledge in this area has been a reliance on the motorized treadmill which constrains runners to constant speeds and gradients and only linear paths. Conversely, limits in the portability or storage capacity of available technology have restricted field research to brief durations and level courses. Therefore another aim of this thesis was to evaluate the capacity of lightweight, portable technology to measure running speed in outdoor undulating terrain. The first study of this thesis assessed the validity of a non-differential GPS to measure speed, displacement and position during human locomotion. Three healthy participants walked and ran over straight and curved courses for 59 and 34 trials respectively. A non-differential GPS receiver provided speed data by Doppler Shift and change in GPS position over time, which were compared with actual speeds determined by chronometry. Displacement data from the GPS were compared with a surveyed 100m section, while static positions were collected for 1 hour and compared with the known geodetic point. GPS speed values on the straight course were found to be closely correlated with actual speeds (Doppler shift: r = 0.9994, p < 0.001, Δ GPS position/time: r = 0.9984, p < 0.001). Actual speed errors were lowest using the Doppler shift method (90.8% of values within ± 0.1 m.sec -1). Speed was slightly underestimated on a curved path, though still highly correlated with actual speed (Doppler shift: r = 0.9985, p < 0.001, Δ GPS distance/time: r = 0.9973, p < 0.001). Distance measured by GPS was 100.46 ± 0.49m, while 86.5% of static points were within 1.5m of the actual geodetic point (mean error: 1.08 ± 0.34m, range 0.69-2.10m). Non-differential GPS demonstrated a highly accurate estimation of speed across a wide range of human locomotion velocities using only the raw signal data with a minimal decrease in accuracy around bends. This high level of resolution was matched by accurate displacement and position data. Coupled with reduced size, cost and ease of use, the use of a non-differential receiver offers a valid alternative to differential GPS in the study of overground locomotion. The second study of this dissertation examined speed regulation during overground running on a hilly course. Following an initial laboratory session to calculate physiological thresholds (VO2 max and ventilatory thresholds), eight experienced long distance runners completed a self- paced time trial over three laps of an outdoor course involving uphill, downhill and level sections. A portable gas analyser, GPS receiver and activity monitor were used to collect physiological, speed and stride frequency data. Participants ran 23% slower on uphills and 13.8% faster on downhills compared with level sections. Speeds on level sections were significantly different for 78.4 ± 7.0 seconds following an uphill and 23.6 ± 2.2 seconds following a downhill. Speed changes were primarily regulated by stride length which was 20.5% shorter uphill and 16.2% longer downhill, while stride frequency was relatively stable. Oxygen consumption averaged 100.4% of runner’s individual ventilatory thresholds on uphills, 78.9% on downhills and 89.3% on level sections. Group level speed was highly predicted using a modified gradient factor (r2 = 0.89). Individuals adopted distinct pacing strategies, both across laps and as a function of gradient. Speed was best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption (VO2) limited runner’s speeds only on uphill sections, and was maintained in line with individual ventilatory thresholds. Running speed showed larger individual variation on downhill sections, while speed on the level was systematically influenced by the preceding gradient. Runners who varied their pace more as a function of gradient showed a more consistent level of oxygen consumption. These results suggest that optimising time on the level sections after hills offers the greatest potential to minimise overall time when running over undulating terrain. The third study of this thesis investigated the effect of implementing an individualised pacing strategy on running performance over an undulating course. Six trained distance runners completed three trials involving four laps (9968m) of an outdoor course involving uphill, downhill and level sections. The initial trial was self-paced in the absence of any temporal feedback. For the second and third field trials, runners were paced for the first three laps (7476m) according to two different regimes (Intervention or Control) by matching desired goal times for subsections within each gradient. The fourth lap (2492m) was completed without pacing. Goals for the Intervention trial were based on findings from study two using a modified gradient factor and elapsed distance to predict the time for each section. To maintain the same overall time across all paced conditions, times were proportionately adjusted according to split times from the self-paced trial. The alternative pacing strategy (Control) used the original split times from this initial trial. Five of the six runners increased their range of uphill to downhill speeds on the Intervention trial by more than 30%, but this was unsuccessful in achieving a more consistent level of oxygen consumption with only one runner showing a change of more than 10%. Group level adherence to the Intervention strategy was lowest on downhill sections. Three runners successfully adhered to the Intervention pacing strategy which was gauged by a low Root Mean Square error across subsections and gradients. Of these three, the two who had the largest change in uphill-downhill speeds ran their fastest overall time. This suggests that for some runners the strategy of varying speeds systematically to account for gradients and transitions may benefit race performances on courses involving hills. In summary, a non – differential receiver was found to offer highly accurate measures of speed, distance and position across the range of human locomotion speeds. Self-selected speed was found to be best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption limited runner’s speeds only on uphills, speed on the level was systematically influenced by preceding gradients, while there was a much larger individual variation on downhill sections. Individuals were found to adopt distinct but unrelated pacing strategies as a function of durations and gradients, while runners who varied pace more as a function of gradient showed a more consistent level of oxygen consumption. Finally, the implementation of an individualised pacing strategy to account for gradients and transitions greatly increased runners’ range of uphill-downhill speeds and was able to improve performance in some runners. The efficiency of various gradient-speed trade- offs and the factors limiting faster downhill speeds will however require further investigation to further improve the effectiveness of the suggested strategy.