977 resultados para Mindlin Pseudospectral Plate Element, Chebyshev Polynomial, Integration Scheme
Resumo:
This paper investigates whether integration policies influence immigrants' propensity to volunteer, the latter being an important element of immigrants' integration into the host society. By distinguishing different categories of integration policies at Switzerland's subnational level and applying a Bayesian multilevel approach, our results suggest varying policy effects: while policies fostering socio-structural rights enhance immigrants' propensity to volunteer, we observe a negative curvilinear relationship between cultural rights and obligations and immigrants' volunteerism implying that a combination of cultural entitlements and obligations is most conducive to immigrants' civic engagement.
Resumo:
A novel time integration scheme is presented for the numerical solution of the dynamics of discrete systems consisting of point masses and thermo-visco-elastic springs. Even considering fully coupled constitutive laws for the elements, the obtained solutions strictly preserve the two laws of thermo dynamics and the symmetries of the continuum evolution equations. Moreover, the unconditional control over the energy and the entropy growth have the effect of stabilizing the numerical solution, allowing the use of larger time steps than those suitable for comparable implicit algorithms. Proofs for these claims are provided in the article as well as numerical examples that illustrate the performance of the method.
Resumo:
Los ensayos virtuales de materiales compuestos han aparecido como un nuevo concepto dentro de la industria aeroespacial, y disponen de un vasto potencial para reducir los enormes costes de certificación y desarrollo asociados con las tediosas campañas experimentales, que incluyen un gran número de paneles, subcomponentes y componentes. El objetivo de los ensayos virtuales es sustituir algunos ensayos por simulaciones computacionales con alta fidelidad. Esta tesis es una contribución a la aproximación multiescala desarrollada en el Instituto IMDEA Materiales para predecir el comportamiento mecánico de un laminado de material compuesto dadas las propiedades de la lámina y la intercara. La mecánica de daño continuo (CDM) formula el daño intralaminar a nivel constitutivo de material. El modelo de daño intralaminar se combina con elementos cohesivos para representar daño interlaminar. Se desarrolló e implementó un modelo de daño continuo, y se aplicó a configuraciones simples de ensayos en laminados: impactos de baja y alta velocidad, ensayos de tracción, tests a cortadura. El análisis del método y la correlación con experimentos sugiere que los métodos son razonablemente adecuados para los test de impacto, pero insuficientes para el resto de ensayos. Para superar estas limitaciones de CDM, se ha mejorado la aproximación discreta de elementos finitos enriqueciendo la cinemática para incluir discontinuidades embebidas: el método extendido de los elementos finitos (X-FEM). Se adaptó X-FEM para un esquema explícito de integración temporal. El método es capaz de representar cualitativamente los mecanismos de fallo detallados en laminados. Sin embargo, los resultados muestran inconsistencias en la formulación que producen resultados cuantitativos erróneos. Por último, se ha revisado el método tradicional de X-FEM, y se ha desarrollado un nuevo método para superar sus limitaciones: el método cohesivo X-FEM estable. Las propiedades del nuevo método se estudiaron en detalle, y se concluyó que el método es robusto para implementación en códigos explícitos dinámicos escalables, resultando una nueva herramienta útil para la simulación de daño en composites. Virtual testing of composite materials has emerged as a new concept within the aerospace industry. It presents a very large potential to reduce the large certification costs and the long development times associated with the experimental campaigns, involving the testing of a large number of panels, sub-components and components. The aim of virtual testing is to replace some experimental tests by high-fidelity numerical simulations. This work is a contribution to the multiscale approach developed in Institute IMDEA Materials to predict the mechanical behavior of a composite laminate from the properties of the ply and the interply. Continuum Damage Mechanics (CDM) formulates intraply damage at the the material constitutive level. Intraply CDM is combined with cohesive elements to model interply damage. A CDM model was developed, implemented, and applied to simple mechanical tests of laminates: low and high velocity impact, tension of coupons, and shear deformation. The analysis of the results and the comparison with experiments indicated that the performance was reasonably good for the impact tests, but insuficient in the other cases. To overcome the limitations of CDM, the kinematics of the discrete finite element approximation was enhanced to include mesh embedded discontinuities, the eXtended Finite Element Method (X-FEM). The X-FEM was adapted to an explicit time integration scheme and was able to reproduce qualitatively the physical failure mechanisms in a composite laminate. However, the results revealed an inconsistency in the formulation that leads to erroneous quantitative results. Finally, the traditional X-FEM was reviewed, and a new method was developed to overcome its limitations, the stable cohesive X-FEM. The properties of the new method were studied in detail, and it was demonstrated that the new method was robust and can be implemented in a explicit finite element formulation, providing a new tool for damage simulation in composite materials.
Resumo:
This work is concerned with the numerical solution of the evolution equations of thermomechanical systems, in such a way that the scheme itself satisfies the laws of thermodynamics. Within this framework, we present a novel integration scheme for the dynamics of viscoelastic continuum bodies in isothermal conditions. This method intrinsically satisfies the laws of thermodynamics arising from the continuum, as well as the possible additional symmetries. The resulting solutions are physically accurate since they preserve the fundamental physical properties of the model. Furthermore, the method gives an excellent performance with respect to robustness and stability. Proof for these claims as well as numerical examples that illustrate the performance of the novel scheme are provided
Resumo:
The AdS/CFT duality has established a mapping between quantities in the bulk AdS black-hole physics and observables in a boundary finite-temperature field theory. Such a relationship appears to be valid for an arbitrary number of spacetime dimensions, extrapolating the original formulations of Maldacena`s correspondence. In the same sense properties like the hydrodynamic behavior of AdS black-hole fluctuations have been proved to be universal. We investigate in this work the complete quasinormal spectra of gravitational perturbations of d-dimensional plane-symmetric AdS black holes (black branes). Holographically the frequencies of the quasinormal modes correspond to the poles of two-point correlation functions of the field-theory stress-energy tensor. The important issue of the correct boundary condition to be imposed on the gauge-invariant perturbation fields at the AdS boundary is studied and elucidated in a fully d-dimensional context. We obtain the dispersion relations of the first few modes in the low-, intermediate- and high-wavenumber regimes. The sound-wave (shear-mode) behavior of scalar (vector)-type low- frequency quasinormal mode is analytically and numerically confirmed. These results are found employing both a power series method and a direct numerical integration scheme.
Resumo:
Time-dependent wavepacket evolution techniques demand the action of the propagator, exp(-iHt/(h)over-bar), on a suitable initial wavepacket. When a complex absorbing potential is added to the Hamiltonian for combating unwanted reflection effects, polynomial expansions of the propagator are selected on their ability to cope with non-Hermiticity. An efficient subspace implementation of the Newton polynomial expansion scheme that requires fewer dense matrix-vector multiplications than its grid-based counterpart has been devised. Performance improvements are illustrated with some benchmark one and two-dimensional examples. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In a seminal paper [10], Weitz gave a deterministic fully polynomial approximation scheme for counting exponentially weighted independent sets (which is the same as approximating the partition function of the hard-core model from statistical physics) in graphs of degree at most d, up to the critical activity for the uniqueness of the Gibbs measure on the innite d-regular tree. ore recently Sly [8] (see also [1]) showed that this is optimal in the sense that if here is an FPRAS for the hard-core partition function on graphs of maximum egree d for activities larger than the critical activity on the innite d-regular ree then NP = RP. In this paper we extend Weitz's approach to derive a deterministic fully polynomial approximation scheme for the partition function of general two-state anti-ferromagnetic spin systems on graphs of maximum degree d, up to the corresponding critical point on the d-regular tree. The main ingredient of our result is a proof that for two-state anti-ferromagnetic spin systems on the d-regular tree, weak spatial mixing implies strong spatial mixing. his in turn uses a message-decay argument which extends a similar approach proposed recently for the hard-core model by Restrepo et al [7] to the case of general two-state anti-ferromagnetic spin systems.
Resumo:
We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML2 and QGPML1 methods proposed in Gourieroux et al. (1984) to PML4 and QGPML2 methods, respectively. An asymptotic theory is developed. The key numerical tool that we use is the Gauss-Freud integration scheme that solves a computational problem that has previously been raised in several fields. Simulation exercises demonstrate the feasibility and robustness of the methods [Authors]
Resumo:
The total energy of molecule in terms of 'fuzzy atoms' presented as sum of one- and two-atomic energy components is described. The divisions of three-dimensional physical space into atomic regions exhibit continuous transition from one to another. The energy components are on chemical energy scale according to proper definitions. The Becke's integration scheme and weight function determines realization of method which permits effective numerical integrations
Resumo:
The need for upgrading a large number of understrength and obsolete bridges in the United States has been well documented in the literature. Through the performance of several Iowa DOT projects, the concept of strengthening bridges (simple and continuous spans) by post-tensioning has been developed. The purpose of this project was to investigate two additional strengthening alternatives that may be more efficient than post-tensioning in certain situations. The research program for each strengthening scheme included a literature review, laboratory testing of the strengthening scheme, and a finite-element analysis of the scheme. For clarity the two strengthening schemes are presented separately. In Part 1 of this report, the strengthening of existing steel stringers in composite steel beam concrete-deck bridges by providing partial end restraint was shown to be feasible. Part 2 of this report summarizes the research that was undertaken to strengthen the negative moment regions of continuous, composite bridges. Two schemes were investigated: post-compression of stringers and superimposed trusses within the stringers.
Resumo:
We have constructed a forward modelling code in Matlab, capable of handling several commonly used electrical and electromagnetic methods in a 1D environment. We review the implemented electromagnetic field equations for grounded wires, frequency and transient soundings and present new solutions in the case of a non-magnetic first layer. The CR1Dmod code evaluates the Hankel transforms occurring in the field equations using either the Fast Hankel Transform based on digital filter theory, or a numerical integration scheme applied between the zeros of the Bessel function. A graphical user interface allows easy construction of 1D models and control of the parameters. Modelling results are in agreement with other authors, but the time of computation is less efficient than other available codes. Nevertheless, the CR1Dmod routine handles complex resistivities and offers solutions based on the full EM-equations as well as the quasi-static approximation. Thus, modelling of effects based on changes in the magnetic permeability and the permittivity is also possible.
Resumo:
Tavoitteena tällä tutkimuksella on soveltaa modernin optimisuunnittelun keinoja komposiittimuovisen nestesäiliön lieriömäisen vaipparakenteen suunnittelemiseksi optimaalisen tyydyttäviksi valmistustekniikan ja kustannusten kannalta. Kuormituksia on kahdenlaisia. Säiliön sisällä on neste, joka tuottaa hydrostaattisen painekuorman ja järjestelmään kytketty puhallin tuottaa ulkoisen ylipaineen. Säiliöt ovat pystysäiliöitä ja ne tukeutuvat alustaan suoran pohjalaatan avulla. FEM- malleissa kuoren alaosat ovat jäykästi kiinnitettyjä ja yläosissa säteensuuntaiset siirtymät ovat estettyjä. Materiaaleiksi kuoreen on valittu kahdella eri menetelmällä lujitetut komposiittimateriaalit. Kantavan kerroksen toimintona on kantaa kuormat. Sulkukerros toimii korroosiosuojana ja sen lujuus on kantavaa kerrosta pienempi. Keinoina käytetään ensin innovatiivista suunnittelua optimaalisten lähtövaihtoehtojen ideoimiseksi ja valitsemiseksi jatkokehittelyä varten. Tavoitteena on asiakkaan tyytyväisyyden maksimointi huomioiden tuotteen kustannukset ja kesto. Yhtenä suunnittelun keinona on käytetty kuoriteoriaa ja komposiittien materiaalimalleja. Kestoehtoina on sovellettu komposiiteille soveltuvia kriteerejä. Toisena keinona käytetään FEM-laskentaa. Elementtityypiksi on valittu kaksiulotteinen kuorielementti, jossa on ortotrooppisen ainemallin mukaiset materiaaliominaisuudet. Jännitystuloksien merkittävyys keston kannalta selvitettiin Tsai-Hillin kriteerillä. Tuloksina saatiin ensin innovoitua rakenteelle kaksi päävaihtoehtoa, joita alettiin optimoida. Valitussa ratkaisussa on huomioitu kokonaisuus ja eri yksityiskohdat, kuten paino, jäykisteet kustannustehokkuus, valmistusnopeus, laatu, hävikit, päästöt, lujuus ja kilpailukykyinen myyntihinta. Yhteenvetona voidaan todeta, että käytetyt keinot ovat hyvin tehokkaita ja niillä voidaan suunnitella ja toteuttaa komposiittirakenteita, jotka tyydyttävät optimaalisesti loppukäyttäjän teknis- taloudelliset vaatimukset. Lisäksi tulokset osoittavat, että standardin ja FEM-laskennan ennustukset ovat lähellä toisiaan sylinterimäisillä kuoriosilla, mutta standardit suosittavat suurempia mittoja itse jäykisteille.
Resumo:
The absolute nodal coordinate formulation was originally developed for the analysis of structures undergoing large rotations and deformations. This dissertation proposes several enhancements to the absolute nodal coordinate formulation based finite beam and plate elements. The main scientific contribution of this thesis relies on the development of elements based on the absolute nodal coordinate formulation that do not suffer from commonly known numerical locking phenomena. These elements can be used in the future in a number of practical applications, for example, analysis of biomechanical soft tissues. This study presents several higher-order Euler–Bernoulli beam elements, a simple method to alleviate Poisson’s and transverse shear locking in gradient deficient plate elements, and a nearly locking free gradient deficient plate element. The absolute nodal coordinate formulation based gradient deficient plate elements developed in this dissertation describe most of the common numerical locking phenomena encountered in the formulation of a continuum mechanics based description of elastic energy. Thus, with these fairly straightforwardly formulated elements that are comprised only of the position and transverse direction gradient degrees of freedom, the pathologies and remedies for the numerical locking phenomena are presented in a clear and understandable manner. The analysis of the Euler–Bernoulli beam elements developed in this study show that the choice of higher gradient degrees of freedom as nodal degrees of freedom leads to a smoother strain field. This improves the rate of convergence.
Resumo:
In [4], Guillard and Viozat propose a finite volume method for the simulation of inviscid steady as well as unsteady flows at low Mach numbers, based on a preconditioning technique. The scheme satisfies the results of a single scale asymptotic analysis in a discrete sense and comprises the advantage that this can be derived by a slight modification of the dissipation term within the numerical flux function. Unfortunately, it can be observed by numerical experiments that the preconditioned approach combined with an explicit time integration scheme turns out to be unstable if the time step Dt does not satisfy the requirement to be O(M2) as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to Dt=O(M), M to 0, which results from the well-known CFL-condition. We present a comprehensive mathematical substantiation of this numerical phenomenon by means of a von Neumann stability analysis, which reveals that in contrast to the standard approach, the dissipation matrix of the preconditioned numerical flux function possesses an eigenvalue growing like M-2 as M tends to zero, thus causing the diminishment of the stability region of the explicit scheme. Thereby, we present statements for both the standard preconditioner used by Guillard and Viozat [4] and the more general one due to Turkel [21]. The theoretical results are after wards confirmed by numerical experiments.