974 resultados para Mindlin Pseudospectral Plate Element, Chebyshev Polynomial, Integration Scheme


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel vertically-coupled active-passive integration architecture that provides an order of magnitude reduction in coupling coefficient variation between misaligned waveguides when compared with a conventional vertically-coupled structure. © 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel vertically-coupled active-passive integration architecture that provides an order of magnitude reduction in coupling coefficient variation between misaligned waveguides when compared with a conventional vertically-coupled structure. © 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel vertically-coupled active-passive integration architecture that provides an order of magnitude reduction in coupling coefficient variation between misaligned waveguides when compared with a conventional vertically-coupled structure. © 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a fully polynomial-time approximation scheme (FPTAS) for minimizing the weighted total tardiness on a single machine, provided that all due dates are equal. The FPTAS is obtained by converting an especially designed pseudopolynomial dynamic programming algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the first-order shear deformation theory (FSDT) and Timoshenko's laminated composite beam functions, a simple displacement-based 4-node, 24-dof quadrilateral laminated plate element is proposed in this paper for linear analysis of thin to moderately thick laminates. The deflection and rotation functions of the element boundary are obtained from the Timoshenko's laminated composite beam functions, hence convergence to the thin plate solution can be achieved theoretically and shear-locking problem is avoided naturally. The in-plane displacement functions of a quadrilateral plane element with drilling degrees of freedom are taken as the in-plane displacements of the proposed quadrilateral element. Some numerical examples of linear analysis of composite laminated plates are calculated, and the results show that the proposed element is convergent, shear-locking free, efficient, accurate and not sensitive to mesh distortion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 4-node, 24-dof quadrilateral displacement-based element (Zhang et al. 2004), which have been developed successfully for linear analysis of thin to thick laminated composite plates, is extended further for geometrically nonlinear analysis in this paper. The proposed element is based on the first-order shear deformation theory (FSDT) and von-Karman's large deflection theory, and the total Lagrangian approach is employed to formulate the element. The deflection and rotation functions of the element boundary are obtained from Timoshenko's laminated composite beam functions. The developed element is simple in formulation, free from shear-locking, and include conventional engineering degrees of freedom. Numerical examples demonstrate that the element is accurate and efficient for large deformation, small rotation geometrically nonlinear analysis of thin to moderately thick laminated composite plates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The negative-dimensional integration method (NDIM) is revealing itself as a very useful technique for computing massless and/or massive Feynman integrals, covariant and noncovanant alike. Up until now however, the illustrative calculations done using such method have been mostly covariant scalar integrals/without numerator factors. We show here how those integrals with tensorial structures also can be handled straightforwardly and easily. However, contrary to the absence of significant features in the usual approach, here the NDIM also allows us to come across surprising unsuspected bonuses. Toward this end, we present two alternative ways of working out the integrals and illustrate them by taking the easiest Feynman integrals in this category that emerge in the computation of a standard one-loop self-energy diagram. One of the novel and heretofore unsuspected bonuses is that there are degeneracies in the way one can express the final result for the referred Feynman integral.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formulation of thermodynamically consistent (TC) time integration methods was introduced by a general procedure based on the GENERIC form of the evolution equations for thermo-mechanical problems. The use of the entropy was reported to be the best choice for the thermodynamical variable to easily provide TC integrators. Also the employment of the internal energy was proved to not involve excessive complications. However, attempts towards the use of the temperature in the design of GENERIC-based TC schemes have so far been unfruitful. This paper complements the said procedure to attain TC integrators by presenting a TC scheme based on the temperature as thermodynamical state variable. As a result, the problems which arise due to the use of the entropy are overcome, mainly the definition of boundary conditions. What is more, the newly proposed method exhibits the general enhanced numerical stability and robustness properties of the entropy formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Integrated Force Method (IFM) is a novel matrix formulation developed for analyzing the civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. This paper presents a new 12-node serendipity quadrilateral plate bending element MQP12 for the analysis of thin and thick plate problems using IFM. The Mindlin-Reissner plate theory has been employed in the formulation which accounts the effect of shear deformation. The performance of this new element with respect to accuracy and convergence is studied by analyzing many standard benchmark plate bending problems. The results of the new element MQP12 are compared with those of displacement-based 12-node plate bending elements available in the literature. The results are also compared with exact solutions. The new element MQP12 is free from shear locking and performs excellent for both thin and moderately thick plate bending situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work sets forth a `hybrid' discretization scheme utilizing bivariate simplex splines as kernels in a polynomial reproducing scheme constructed over a conventional Finite Element Method (FEM)-like domain discretization based on Delaunay triangulation. Careful construction of the simplex spline knotset ensures the success of the polynomial reproduction procedure at all points in the domain of interest, a significant advancement over its precursor, the DMS-FEM. The shape functions in the proposed method inherit the global continuity (Cp-1) and local supports of the simplex splines of degree p. In the proposed scheme, the triangles comprising the domain discretization also serve as background cells for numerical integration which here are near-aligned to the supports of the shape functions (and their intersections), thus considerably ameliorating an oft-cited source of inaccuracy in the numerical integration of mesh-free (MF) schemes. Numerical experiments show the proposed method requires lower order quadrature rules for accurate evaluation of integrals in the Galerkin weak form. Numerical demonstrations of optimal convergence rates for a few test cases are given and the method is also implemented to compute crack-tip fields in a gradient-enhanced elasticity model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new C-0 composite plate finite element based on Reddy's third order theory is used for large deformation dynamic analysis of delaminated composite plates. The inter-laminar contact is modeled with an augmented Lagrangian approach. Numerical results show that the widely used ``unconditionally stable'' beta-Newmark method presents instability problems in the transient simulation of delaminated composite plate structures with large deformation. To overcome this instability issue, an energy and momentum conserving composite implicit time integration scheme presented by Bathe and Baig is used. It is found that a proper selection of the penalty parameter is very crucial in the contact simulation. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method is presented here to analyse the Peierls-Nabarro model of an edge dislocation in a rectangular plate. The analysis is based on the superposition scheme and series expansions of complex potentials. The stress field and dislocation density field on the slip plane can be expressed as the first and the second Chebyshev polynomial series respectively. Two sets of governing equations are obtained on the slip plane and outer boundary of the rectangular plate respectively. Three numerical methods are used to solve the governing equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with a finite element modelling method for thin layer mortared masonry systems. In this method, the mortar layers including the interfaces are represented using a zero thickness interface element and the masonry units are modelled using an elasto-plastic, damaging solid element. The interface element is formulated using two regimes; i) shear-tension and ii) shearcompression. In the shear-tension regime, the failure of joint is consiedered through an eliptical failure criteria and in shear-compression it is considered through Mohr Coulomb type failure criterion. An explicit integration scheme is used in an implicit finite element framework for the formulation of the interface element. The model is calibrated with an experimental dataset from thin layer mortared masonry prism subjected to uniaxial compression, a triplet subjected to shear loads a beam subjected to flexural loads and used to predict the response of thin layer mortared masonry wallettes under orthotropic loading. The model is found to simulate the behaviour of a thin layer mortated masonry shear wall tested under pre-compression and inplane shear quite adequately. The model is shown to reproduce the failure of masonry panels under uniform biaxial state of stresses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radial return mapping algorithm within the computational context of a hybrid Finite Element and Particle-In-Cell (FE/PIC) method is constructed to allow a fluid flow FE/PIC code to be applied solid mechanic problems with large displacements and large deformations. The FE/PIC method retains the robustness of an Eulerian mesh and enables tracking of material deformation by a set of Lagrangian particles or material points. In the FE/PIC approach the particle velocities are interpolated from nodal velocities and then the particle position is updated using a suitable integration scheme, such as the 4th order Runge-Kutta scheme[1]. The strain increments are obtained from gradients of the nodal velocities at the material point positions, which are then used to evaluate the stress increment and update history variables. To obtain the stress increment from the strain increment, the nonlinear constitutive equations are solved in an incremental iterative integration scheme based on a radial return mapping algorithm[2]. A plane stress extension of a rectangular shape J2 elastoplastic material with isotropic, kinematic and combined hardening is performed as an example and for validation of the enhanced FE/PIC method. It is shown that the method is suitable for analysis of problems in crystal plasticity and metal forming. The method is specifically suitable for simulation of neighbouring microstructural phases with different constitutive equations in a multiscale material modelling framework.