901 resultados para Milk contamination
Resumo:
Considering acute and chronic toxicity effects on human and animal health caused by pesticide residues in food, this study aimed to analyze organophosphorate (OP) and carbamate (CB) in feedstuff and water destined for dairy cattle, as well as in the milk produced by these animals, through gas chromatography (GC). In the Agreste region of Pernambuco, Brazil, 30 raw milk samples and all components of the animals' diet were collected from several farms. Out of the 30 milk of milk analyzed, six (20%) were contaminated with OP, five (16.7%) with CB, and one sample with both pesticides. From 48 analyzed feed samples, 15 (31.25%) were contaminated with residues of OP, six (12.50%) with CB, and one sample was contaminated with both pesticides. Out of 16 water samples analyzed, six (37.50%) were contaminated with OP residues, but non with CB. In four dairy farms the pesticides detected in milk were compatible with the active principles found in water and/or foodstuff, suggesting them to be the source of contamination.
Resumo:
Copper sulfate and sodium hypochlorite are used in footbath solutions for the prevention and treatment of bovine digital diseases; however, data on the residues of such elements in milk are sparse in Brazil. This study evaluated the cost of applying the footbath treatment and the total amount of copper and chlorite residues in the milk of healthy cows after they had passed through these footbath solutions. Two groups of 7 cows each (GI and GII) were studied. In the case of GI, 1% sodium hypochlorite was used and for GII 5% copper sulfate was employed in the footbath. The milk samples were collected before the 7-day footbath treatment period (M0) and 24 h (M1), 48 h (M2), 72 h (M3) and 15 days (M15) after the last footbath. Statistical analysis to compare the different samples within each group was carried out by applying Friedman's test, followed by Dunn's test (p<0.05). It was concluded that the amount of total chlorites and copper in the milk of healthy cattle after routine daily footbaths for a period of 7 days presented some variations. However, the concentrations observed were considered insufficient to represent a risk to human health. The cost of the footbath solutions was found to be reasonable.
Resumo:
New microbiological methods have been developed and commercialized, but their performance must be guaranteed. The aim of the present study was to evaluate the PetrifilmTM and TEMPO® systems compared to the conventional method for counting microorganisms in pasteurized milk. A total of 141 samples of pasteurized milk were analyzed by counting mesophilic aerobic, Coliforms at 35 ºC, Coliforms at 45 ºC, and Escherichia coli microorganisms. High correlation was found between the methods for counting Coliforms at 35 ºC, but low correlation was found for counting mesophilic aerobic, Coliforms at 45 ºC, and Escherichia coli. No significant statistical difference was found among the three methods for counting Coliforms at 35 ºC; however, the mean counts of mesophilic aerobic, Coliforms at 45 ºC, and Escherichia coli showed significant statistical difference. PetrifilmTM and TEMPO® systems had satisfactory results for Coliforms at 35 ºC in pasteurized milk but low performance for mesophilic aerobic, Coliforms at 45 ºC and Escherichia coli.
Resumo:
This study aimed to compare Lactobacillus rhamnosus growth in MRS (de Man, Rogosa and Sharpe) broth and a culture medium containing milk whey (MMW) and to evaluate aflatoxin B1 (AFB1) adsorption capacity by bacterial cells produced in both culture media. L. rhamnosus cells were cultivated in MRS broth and MMW (37 °C, 24 hours), and bacterial cell concentration was determined spectrophotometrically at 600 nm. AFB1 (1 µg/ml) adsorption assays were conducted using 1 x 10(10) non-viable L. rhamnosus cells (121 °C, 15 minutes) at pHs 3.0 and 6.0 and contact time of 60 minutes. AFB1 quantification was performed by High Performance Liquid Chromatography. Bacterial cell concentration in MMW was higher (9.84 log CFU/ml) than that in MRS broth (9.63 log CFU/ml). There were no significant differences between AFB1 binding results at the same pH value (3.0 or 6.0) for the cells cultivated in MRS broth (46.0% and 35.8%, respectively) and in MMW (43.7% and 25.8%, respectively), showing that MMW can adequately replace the MRS broth. Therefore, it can be concluded that the use of L. rhamnosus cells cultivated in MMW offers advantages such as reduction in large scale production costs, improvement of environmental sustainability, and being a practicable alternative for decontamination of food products susceptible to aflatoxin contamination.
Resumo:
Biofilms in milk cooling tanks compromise product quality even on farms. Due to the lack of studies of this topic, this study evaluated the microbiological conditions of raw milk cooling tanks on farms and characterized the microorganisms isolated from these tanks. Samples were wiped off with sterile swabs from seven milk cooling tanks in three different points in each tank. Mesophiles and psychrotrophic counts were performed in all samples. The isolation of Pseudomonas spp., Bacillus cereus and atypical colonies formed on selective media were also performed, totalizing 297 isolates. All isolates were tested for protease and lipase production and biofilm formation. Of the total isolates, 62.9% produced protease, 55.9% produced lipase, and 50.2% produced biofilm. The most widespread genus inside the milk cooling tank was Pseudomonas since it was not possible to associate this contamination with a single sampling point in the equipment. High counts of microorganisms were found in some cooling tanks, indicating poor cleaning of the equipment and providing strong evidences of microbial biofilm presence. Moreover, it is worth mentioning the milk potential contamination with both microbial cells and their degrading enzymes, which compromises milk quality.
Resumo:
Milkborne transmission of Shiga toxin- producing Escherichia coli (STEC) has raised considerable concern due to recent outbreaks worldwide and poses a threat to public health. The aim of this study was to develop a sensitive and specific multiplex PCR assay to detect the presence of STEC in bovine raw milk. To identify E. coli (ATCC 25922) contamination, the gene uspA was used, and PCR sensitivity and specificity were accessed by testing diluted samples ranging from 2 to 2.0 × 10(6) CFU/mL. To detect STEC, the stx1 and stx2 genes were selected as targets. After reaction standardization, the multiplex assay was tested in raw milk collected from 101 cows on dairy farms. PCR assay for E. coli detection had a specificity of 100% and sensitivity of 79% (P<0.0001), with a lower detection limit of 2 CFU/mL. Multiplex PCR assay had 100% sensitivity for E. coli positive raw milk samples, and 31.1% were contaminated with STEC, 28.3% of stx2, and 1.9% of stx1. The multiplex PCR assay described in the present study can be employed to identify and screen E. coli harboring stx1 and stx2 genes in raw milk on dairy farms and in industries.
Resumo:
The occurrence of aflatoxins (AF) B(1), B(2), G(1), G(2) and cyclopiazonic acid (CPA) in feeds, and AFM(1) and CPA in milk was determined in dairy farms located in the northeastern region of Sao Paulo state, Brazil, between October 2005 and February 2006. AF and CPA determinations were performed by HPLC. AFB(1) was found in 42% of feed at levels or 1.0-26.4 mu g kg(-1) (mean: 7.1 +/- 7.2 mu g kg(-1)). The concentrations of AFM(1) in raw milk varied between 0.010 and 0.645 mu g l(-1) (mean: 0.104 +/- 0.138 mu g l(-1)). Only one sample was above the tolerance limit adopted in Brazil (0.50 mu g l(-1)) for AFM(1) in milk. Regarding CPA in feed, six (12%) samples showed concentrations of 12.5-1533 mu g kg(-1) (mean: 57.6 +/- 48.7 mu g kg(-1)). CPA was detected in only three milk samples (6%) at levels of 6.4, 8.8 and 9.1 mu g l(-1). Concentrations of aflatoxins and CPA in feed and milk were relatively low, although the high frequency of both mycotoxins indicates the necessity to continuously monitor dairy farms to prevent contamination of feed ingredients.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thirty-seven samples of human milk (colostrum) from donors living in the Ribeirao Preto region were analyzed to determine the levels of organochlorine pesticide residues. Donors were classified into two groups, i.e., occupationally exposed and non-exposed to pesticides. Other factors such as age, previous lactations, race, smoking habit, occupation, family income and educational level were also considered. Analysis was performed by preliminary lipid extraction followed by fractional partition on a column and finally by gas chromatography with an electron capture detector. Lindane was found in 32% of the samples in amounts of less than 0.001 mg/kg; heptachlor was found in 65% of the samples at mean levels of 0.001 mg/kg, i.e., a level five-fold lower than that established by FAO/WHO (1970) for cow's milk. Aldrin and endrin were not detected in any of the samples. Dieldrin was detected in only one sample at a level of 0.038 mg/kg, which is considered high. DDT and DDE amounts are reported as total DDT and at least one of these compounds was present in every sample. Amounts detected in donors occupationally exposed to pesticides ranged from 0.008 to 0.455 mg/kg (mean, 0.149 mg/kg), i.e., three times the limit established by FAO/WHO (1970), while values for donors who had not been exposed ranged from 0.002 to 0.072 mg/kg (mean, 0.025 mg/kg), i.e., half the limit. Considering the level of acceptable daily intake proposed by FAO/WHO (1973), lactents ingested 1% of the acceptable intake of lindane (all donors), 30% of the acceptable intake of heptachlor (all donors), 60% of the acceptable intake of DDT (non-exposed donors), and 3.7 times the acceptable intake of DDT (exposed donors). Comparing the present results with those obtained 10 years ago, the total DDT level in human milk is decreasing in this part of the country. The mean amount of organochlorine residues in non-exposed women's milk was one of the lowest levels among those recorded in the literature. DDT levels of occupationally exposed women's milk were comparable with those reported for developed countries and lower than those detected in Latin American countries. When the results of this survey are considered in relation to the advantages of breast-feeding, the risk-benefit balance is still favorable to breast-feeding. However, given the lack of long-term epidemiological studies, undesirable or harmful long-lasting effects cannot be excluded.
Resumo:
A procedure to determine residue concentrations of synthetic pyrethroid insecticides (flumethrin, deltamethrin, cypermethrin and cyhalothrin) in the milk and blood of lactating dairy cows was developed. Extraction was performed with acetonitrile, n-hexane partitioning, and silica gel column cleanup with n-hexane and diethyl ether. Analysis was carried out by high- performance liquid chromatography and ultraviolet detection. Recovery of the four pyrethroids averaged 78 to 91% with a minimum detectable concentration of 0.001 mg/kg. The method was reproducible and sensitive.
Resumo:
The objective of this study was to isolate and identify the main staphylococcal species causing bovine mastitis in 10 Brazilian dairy herds and study their capability to produce enterotoxins. Herds were selected based on size and use of milking technology, and farms were visited once during the study. All mammary glands of all lactating cows were screened using the California Mastitis Test (CMT) and a strip cup. A single aseptic milk sample (20. mL) was collected from all CMT-positive quarters. Identification of Staphylococcus spp. was performed using conventional microbiology, and PCR was used to determine the presence of enterotoxin-encoding genes (sea, seb, sec, and sed). Of the 1,318 CMT-positive milk samples, Staphylococcus spp. were isolated from 263 (19.9%). Of these isolates, 135 (51%) were coagulase-positive staphylococci (CPS) and 128 (49%) were coagulase-negative staphylococci (CNS). Eighteen different species of CNS were isolated, among which S. warneri, S. epidermidis and S. hyicus were the most frequent. The distribution of Staphylococcus species was different among herds: S. epidermidis was found in 8 herds, S. warneri was found in 7 herds, and S. hyicus in 6 herds. Some of the CNS species (S. saprophyticus ssp. saprophyticus, S. auricularis, S. capitis, and S. chromogenes) were isolated in only one of the farms. Genes related to production of enterotoxins were found in 66% (n = 85) of all CNS and in 35% of the CPS isolates. For both CNS and CPS isolates, the most frequently identified enterotoxin genes were sea, seb, and sec; the prevalence of sea differed between CPS (9.5%) and CNS (35.1%) isolates. Staphylococcus warneri isolates showed a greater percentage of sea than seb, sec, or sed, whereas S. hyicus isolates showed a greater percentage of sea than sec. Over 60% of CNS belonged to 3 major species, which carried 62.2 to 81.3% of the enterotoxin genes. The high prevalence highlights the potential for food poisoning caused by these species. For possible high-risk situations for food poisoning, such as milk produced with total bacterial counts greater than regulatory levels and stored under inappropriate temperatures, monitoring contamination with CNS could be important to protect human health. Because the prevalence of CNS intramammary infections in dairy herds is usually high, and these species can be found in great numbers in bulk milk, identification of risk factors for production of staphylococcal enterotoxins should be considered in future studies. © 2013 American Dairy Science Association.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to identify the risks of staphylococcal food poisoning due to the consumption of raw milk. Fifty-one farms in Londrina (PR) and 50 in Pelotas (RS) were analyzed, to determine the population of coagulase-positive staphylococci (UFC/ mL), as well as to verify the ability of producing Staphylococcal Enterotoxin A (SEA) by immunodifusion (OSP), the presence of the gene for the production of SEA (PCR) in the cultures, and the research of enterotoxin (SEA to SEE) in milk samples using ELISA commercial kit. Considering the 101 farms analyzed, 19 (18.8%) presented coagulase-positive staphylococci count above 105 UFC/mL. For the evaluation of the enterotoxigenic ability (SEA) by the OSP technique, six cultures coagulase-positive (5.5%) were positive to the test and identified as S. aureus. From the coagualse-negative sample, one (5.5%) was OSP positive. For the evaluation of the presence of the gene for EEA synthesis, 51 cultures of staphylococci were tested. From this total, 14 (27.45%) presented the gene, and from that, only 5 (9.81%) cultures were capable of expressing it in the technique of the OSP. The morphologic characteristic of the evaluated cultures that had enterotoxigenic capacity, from the 14 (33,3%) cultures that presented the gene for EEA production, 05 (11.9%) were characterized as typical cultures of S.aureus in Baird Parker agar. All the 12 milk samples studied for the presence of EEA to EEE in milk were negative. Thus, it can be concluded that there is extensive contamination of raw milk for staphylococci coagulase, however, most of the isolated strains were not enterotoxigenic or did not express such a characteristic. Only 9.81% of the tested colonies expressed the gene and effectively produced SEA. None of the samples had sufficient counts to produce detectable amounts of SEA. The milk samples did not present risk to cause staphylococcal food poisoning if consumed in natura until the collection moment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)