767 resultados para Migratory Shorebirds
Resumo:
Regulations for hunting in Iowa.
Resumo:
Among all sports, football is the one that saw the largest diffusion during the 20th century. Professional leagues exist on all continents and professional footballers are constantly on the move, trying to reach the wealthiest European clubs. Using the football players' market as an example, this article highlights some key features of economic globalization: the new international division of labour, the ever increasing role played by intermediaries to bind the demand and supply of work on a transnational scale, and the setting up of spatially fragmented trade circuits. These processes form the basis for the creation of a global market of footballers in which clubs and championships play complementary roles and are more than ever functionally integrated beyond national borders.
Resumo:
Wetlands in southern Alberta are often managed to benefit waterfowl and cattle production. Effects on other species usually are not examined. I determined the effect of managed wetlands on upland-nesting shorebirds in southern Alberta by comparing numbers of breeding willets (Catoptrophorus semipalmatus), marbled godwits (Limosa fedoa), and long-billed curlews (Numenius americanus) among areas of managed wetlands, natural wetland basins, and no wetland basins from 1995 to 2000. Surveys were carried out at 21 sites three times each year. Nine to ten of these areas (each 2 km2) were searched for nests annually from 1998–2000. Numbers of willets and marbled godwits and their nests were always highest in areas with managed wetlands, probably because almost all natural wetland basins were dry in this region in most years. Densities of willets seen during pre-incubation surveys averaged 2.3 birds/km2 in areas of managed wetlands, 0.4 in areas of natural wetland basins, and 0.1 in areas with no wetland basins. Nest densities of willets (one search each season) averaged 1.5, 0.9, and 0.3 nests/km2 in areas of managed, natural, and no wetland basins, respectively. Similarly, pre-incubation surveys averaged 1.6, 0.6, and 0.2 godwits/km2 in areas of managed, natural, and no wetland basins, and 1.2, 0.3, and 0.1 godwit nests/km2. For long-billed curlews, pre-incubation surveys averaged 0.1, 0.2, and 0.1 birds/km2, and 0, 0.2, and 0 nests/km2. Nest success was similar in areas with and without managed wetlands. Shallow managed wetlands in this region appear beneficial to willets and marbled godwits, but not necessarily to long-billed curlews. Only 8% of marked willets and godwits with nests in the area were seen or heard during surveys, compared with 29% of pre-laying individuals and 42% of birds with broods. This suggests that a low and variable percentage of these birds is counted during breeding bird surveys, likely limiting their ability to adequately monitor populations of these species.
Resumo:
Many shorebirds are long-distance migrants and depend on the energy gained at stopover sites to complete migration. Competing hypotheses have described strategies used by migrating birds; the energy-selection hypothesis predicts that shorebirds attempt to maximize energy gained at stopover sites, whereas the time-selection hypothesis predicts that shorebirds attempt to minimize time spent at stopover sites. The energy- and time-selection hypotheses both predict that birds in better condition will depart sites sooner. However, numerous studies of stopover duration have found little support for this prediction, leading to the suggestion that migrating birds operate under energy and time constraints for only a small portion of the migratory season. During fall migration 2002, we tested the prediction that birds in better condition depart stopover sites sooner by examining the relationship between stopover duration and body condition for migrating Least Sandpipers (Calidris minutilla) at three stopover sites in the Lower Mississippi Alluvial Valley. We also tested the assumption made by the Lower Mississippi Alluvial Valley Migratory Bird Science Team that shorebirds stay in the Mississippi Valley for 10 d. The assumption of 10 d was used to estimate the amount of habitat required by shorebirds in the Mississippi Valley during fall migration; a period longer than 10 d would increase the estimate of the amount habitat required. We used multiple-day constancy models of apparent survival and program MARK to estimate stopover duration for 293 individually color-marked and resighted Least Sandpipers. We found that a four-day constancy interval and a site x quadratic time trend interaction term best modeled apparent survival. We found only weak support for body condition as a factor explaining length of stopover duration, which is consistent with findings from similar work. Stopover duration estimates were 4.1 d (95% CI = 2.8–6.1) for adult Least Sandpipers at Bald Knob National Wildlife Refuge, Arkansas, 6.5 d (95% CI = 4.9–8.7) for adult and 6.1 d (95% CI =4.2–9.1) for juvenile Least Sandpipers at Yazoo National Wildlife Refuge, Mississippi, and 6.9 d (95% CI = 5.5–8.7) for juvenile Least Sandpipers at Morgan Brake National Wildlife Refuge, Mississippi. Based on our estimates of stopover duration and the assumption made by the Lower Mississippi Alluvial Valley Migratory Bird Science Team, there is sufficient habitat in the lower Mississippi Valley to support shorebirds during fall migration.
Resumo:
Although studies often report that densities of many forest birds are negatively related to urbanization, the mechanisms guiding this pattern are poorly understood. Our objective was to use a population simulation to examine the relative influence of six demographic and behavioral processes on patterns of avian abundance in urbanizing landscapes. We constructed an individual-based population simulation model representing the annual cycle of a Neotropical migratory songbird. Each simulation was performed under two landscape scenarios. The first scenario had similar proportions of high- and low-quality habitat across the urban to rural gradient. Under the first scenario, avian density was negatively related to urbanization only when rural habitats were perceived to be of higher quality than they actually were. The second landscape scenario had declining proportions of high-quality habitat as urbanization increased. Under the second scenario, each mechanism generated a negative relationship between density and urbanization. The strongest effect on density resulted when birds preferentially selected habitats in landscapes from which they fledged or were constrained from dispersing. The next strongest patterns occurred when birds directly evaluated habitat quality and accurately selected the highest-quality available territories. When birds selected habitats based on the presence of conspecifics, the density–urbanization relationship was only one-third the strength of other habitat selection mechanisms and only occurred under certain levels of population survival. Although differences in adult or nest survival in the face of random habitat selection still elicited reduced densities in urban landscapes, the relationships between urbanization and density were weaker than those produced by the conspecific attraction mechanism. Results from our study identify key predictions and areas for future research, including assessing habitat quality in urban and rural areas in order to determine if habitats in urban areas are underutilized.
Resumo:
Long-distance migrants wintering in tropical regions face a number of critical conservation threats throughout their lives, but seasonal estimates of key demographic parameters such as winter survival are rare. Using mist-netting-based mark-recapture data collected in coastal Costa Rica over a six-year period, we examined variation in within- and between-winter survivorship of the Prothonotary Warbler (Protonotaria citrea; 753 young and 376 adults banded), a declining neotropical habitat specialist that depends on threatened mangrove forests during the nonbreeding season. We derived parallel seasonal survivorship estimates for the Northern Waterthrush (Seiurus noveboracensis; 564 young and 93 adults banded), a cohabitant mangrove specialist that has not shown the same population decline in North America, to assess whether contrasting survivorship might contribute to the observed differences in the species’ population trajectories. Although average annual survival probability was relatively similar between the two species for both young and adult birds, monthly estimates indicated that relative to Northern Waterthrush, Prothonotary Warblers exhibited: greater interannual variation in survivorship, especially within winters; greater variation in survivorship among the three study sites; lower average between-winter survivorship, particularly among females, and; a sharp decline in between-winter survivorship from 2003 to 2009 for both age groups and both sexes. Rather than identifying one seasonal vital rate as a causal factor of Prothonotary Warbler population declines, our species comparison suggests that the combination of variable within-winter survival with decreasing between-winter survival demands a multi-seasonal approach to the conservation of this and other tropical-wintering migrants.
Resumo:
Mechanical operations such as mowing, tilling, seeding, and harvesting are well-known sources of direct avian mortality in agricultural fields. However, there are currently no mortality rate estimates available for any species group or larger jurisdiction. Even reviews of sources of mortality in birds have failed to address mechanical disturbance in farm fields. To overcome this information gap we provide estimates of total mortality rates by mechanical operations for five selected species across Canada. In our step-by-step modeling approach we (i) quantified the amount of various types of agricultural land in each Bird Conservation Region (BCR) in Canada, (ii) estimated population densities by region and agricultural habitat type for each selected species, (iii) estimated the average timing of mechanical agricultural activities, egg laying, and fledging, (iv) and used these values and additional demographical parameters to derive estimates of total mortality by species within each BCR. Based on our calculations the total annual estimated incidental take of young ranged from ~138,000 for Horned Lark (Eremophila alpestris) to as much as ~941,000 for Savannah Sparrow (Passerculus sandwichensis). Net losses to the fall flight of birds, i.e., those birds that would have fledged successfully in the absence of mechanical disturbance, were, for example ~321,000 for Bobolink (Dolichonyx oryzivorus) and ~483,000 for Savannah Sparrow. Although our estimates are subject to an unknown degree of uncertainty, this assessment is a very important first step because it provides a broad estimate of incidental take for a set of species that may be particularly vulnerable to mechanical operations and a starting point for future refinements of model parameters if and when they become available.
Resumo:
There is an imminent need for conservation and best-practice management efforts in marine ecosystems where global-scale declines in the biodiversity and biomass of large vertebrate predators are increasing and marine communities are being altered. We examine two marine-based industries that incidentally take migratory birds in Canada: (1) commercial fisheries, through bycatch, and (2) offshore oil and gas exploration, development, and production. We summarize information from the scientific literature and technical reports and also present new information from recently analyzed data to assess the magnitude and scope of mortality. Fisheries bycatch was responsible for the highest levels of incidental take of migratory bird species; estimated combined take in the longline, gillnet, and bottom otter trawl fisheries within the Atlantic, including the Gulf of St. Lawrence, and Pacific regions was 2679 to 45,586 birds per year. For the offshore oil and gas sector, mortality estimates ranged from 188 to 4494 deaths per year due to the discharge of produced waters resulting in oil sheens and collisions with platforms and vessels; however these estimates for the oil and gas sector are based on many untested assumptions. In spite of the uncertainties, we feel levels of mortality from these two industries are unlikely to affect the marine bird community in Canada, but some effects on local populations from bycatch are likely. Further research and monitoring will be required to: (1) better estimate fisheries-related mortality for vulnerable species and populations that may be impacted by local fisheries, (2) determine the effects of oil sheens from produced waters, and attraction to platforms and associated mortality from collisions, sheens, and flaring, so that better estimates of mortality from the offshore oil and gas sector can be obtained, and (3) determine impacts associated with accidental spills, which are not included in our current assessment. With a better understanding of the direct mortality of marine birds from industry, appropriate mitigation and management actions can be implemented. Cooperation from industry for data collection, research to fill knowledge gaps, and implementation of mitigation approaches will all be needed to conserve marine birds in Canada.