947 resultados para Mid-latitude


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fecal samples and behavioral data were collected at a fortnightly basis during 11 months period from free-living male American kestrels living in southeast Brazil (22 degrees S latitude). The aim was to investigate the seasonal changes in testicular and adrenal steroidogenic activity and their correlation to reproductive behaviors and environmental factors. The results revealed that monthly mean of fecal glucocorticoid metabolites in May and June were higher than those estimated in November. in parallel, monthly mean of androgen metabolites in September was higher than those from January to April and from October to November. Molt took place from January to March, whereas copulation was observed from June to October but peaked in September. Nest activity and food transfer to females occurred predominantly in October, and parental behavior was noticed only in November. Territorial aggressions were rare and scattered throughout the year. Multiple regression analysis revealed that fecal androgen levels are predicted by photoperiod and copulation, while fecal glucocorticoid levels are only predicted by photoperiod. Bivariate correlations showed that fecal androgen metabolites were positively correlated with fecal glucocorticoid metabolites and copulation, but negatively correlated with molt. Additionally, copulation was positively correlated with food transfer to females and nest activity, but negatively correlated with molt. These findings suggest that male American kestrels living in southeast Brazil exhibit significant seasonal changes in fecal androgen and glucocorticoid concentrations, which seem to be stimulated by decreasing daylength but not by rainfall or temperature. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial and temporal patterns in test size and shape (test conicity and spiral roundness) and absolute abundance (accumulation rate) of the planktonic foraminifer Contusotruncana contusa were studied in the South Atlantic Ocean (DSDP sites 356, 516, 525 and 527) during an interval corresponding to the last 800 kyr of the Cretaceous. The variation in absolute abundance of C. contusa was characterised by alternating periods of high and low abundance; some of these periods were traceable across the entire mid-latitude South Atlantic Ocean. While the mean spiral roundness did not show any interpretable patterns, a sudden increase of the mean test size and mean test conicity occurred between 65.3 and 65.2 Ma (based on linear interpolation within the Cretaceous part of Subchron C29R) at all sites studied, indicating a poleward migration followed by rapid withdrawal of the low-latitude C. contusa morphotypes from the mid-latitude South Atlantic Ocean. We suggest that this event was caused by a short period of surface-water warming in the southern mid-latitudes corresponding to the brief high-latitude warming event and associated faunal migrations in the Boreal and Austral realms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following a brief description of the atmosphere and ionosphere in Chapter I we describe how the equations of continuity and momentum for 0+, H+, He+, 0++ are derived from the formulations of St-Maurice and Schunk(1977) and Quegan et al.(1981) in Chapter II. In Chapter III we investigate the nature of the downward flow of protons in a collapsing post-sunset ionosphere. We derive an analytical form for the limiting temperature, we also note the importance of the polarization field term and concluded that the flow will remain subsonic for realistic conditions. The time-dependent behaviour of He+ under sunspot minimum conditions is investigated in Chapter IV. This is achieved by numerical solution of the 0+, H+ and,He+ continuity and momentum equations, treating He+ as a minor ion with 0+ , H+ as major ions. We found that He+ flows upwards during the day-time and downwards during the nighttime. He+ flux tube content reached a maximum on the 8th day of the integration period and started to decreasing. This is due to the large amount of H+ present at the late stages of the integration period which makes He+ unable to diffuse through the H+ layer away from the loss region. In Chapter V we investigate the behaviour of 0++ using sunspot maximum parameters. Although our results support the findings of Geis and Young (1981) that the large amounts of 0++ at the equator are caused mainly by thermal diffusion, the model used by Geis and Young overemphesizes the effect of thermal diffusion. The importance of 0++ - 0+ collision frequency is also noted. In Chapter VI we extend the work of Chapter IV, presenting a comparative study of H and He at sunspot minimum and sunspot maximum.In this last Chapter all three ions, O+ ,H+ and He+ , are treated theoretically as major ions and we concentrate mainly on light ion contents and fluxes. The results of this Chapter indicate that by assuming He+ as a minor ion we under-estimate He+ and over-estimate. H+. Some interesting features concerning the day to day behaviour of the light ion fluxes arise. In particular the day-time H+ fluxes decrease from day to day in contrast to the work of Murphy et al.(1976). In appendix.A we derive some analytical forms for the optical depth so that the models can include a realistic description of photoionization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to clarify the role of the Southern Ocean storms on interior mixing and meridional overturning circulation. A periodic and idealized numerical model has been designed to represent the key physical processes of a zonal portion of the Southern Ocean located between 70 and 40° S. It incorporates physical ingredients deemed essential for Southern Ocean functioning: rough topography, seasonally varying air–sea fluxes, and high-latitude storms with analytical form. The forcing strategy ensures that the time mean wind stress is the same between the different simulations, so the effect of the storms on the mean wind stress and resulting impacts on the Southern Ocean dynamics are not considered in this study. Level and distribution of mixing attributable to high-frequency winds are quantified and compared to those generated by eddy–topography interactions and dissipation of the balanced flow. Results suggest that (1) the synoptic atmospheric variability alone can generate the levels of mid-depth dissipation frequently observed in the Southern Ocean (10−10–10−9 W kg−1) and (2) the storms strengthen the overturning, primarily through enhanced mixing in the upper 300 m, whereas deeper mixing has a minor effect. The sensitivity of the results to horizontal resolution (20, 5, 2 and 1 km), vertical resolution and numerical choices is evaluated. Challenging issues concerning how numerical models are able to represent interior mixing forced by high-frequency winds are exposed and discussed, particularly in the context of the overturning circulation. Overall, submesoscale-permitting ocean modeling exhibits important delicacies owing to a lack of convergence of key components of its energetics even when reaching Δx =  1 km.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seven years (2003–2010) of measured shortwave (SW) irradiances were used to obtain estimates of the 10 min averaged effective cloud optical thickness (ECOT) and of the shortwave cloud radiative effect (CRESW) at the surface in a mid-latitude site (Évora — south of Portugal), and its seasonal variability is presented. The ECOT, obtained using transmittance measurements at 415 nm, was compared with the correspondent MODIS cloud optical thickness (MODIS COT) for non-precipitating water clouds and cloud fractions higher than 0.25. This comparison showed that the ECOT represents well the cloud optical thickness over the study area. The CRESW, determined for two SW broadband ranges (300–1100 nm; 285–2800 nm), was normalized (NCRESW) and related with the obtained ECOT. A logarithmic relation between NCRESW and ECOT was found for both SW ranges, presenting lower dispersion for overcast-sky situations than for partially cloudy-sky situations. The NCRESW efficiency (NCRESW per unit of ECOT) was also related with the ECOT for overcast-sky conditions. The relation found is parameterized by a power law function showing that NCRESW efficiency decreases as the ECOT increases, approaching one for ECOT values higher than about 50.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Simulations with the IPSL atmosphere–ocean model asynchronously coupled with the BIOME1 vegetation model show the impact of ocean and vegetation feedbacks, and their synergy, on mid- and high-latitude (>40°N) climate in response to orbitally-induced changes in mid-Holocene insolation. The atmospheric response to orbital forcing produces a +1.2 °C warming over the continents in summer and a cooling during the rest of the year. Ocean feedback reinforces the cooling in spring but counteracts the autumn and winter cooling. Vegetation feedback produces warming in all seasons, with largest changes (+1 °C) in spring. Synergy between ocean and vegetation feedbacks leads to further warming, which can be as large as the independent impact of these feedbacks. The combination of these effects causes the high northern latitudes to be warmer throughout the year in the ocean–atmosphere-vegetation simulation. Simulated vegetation changes resulting from this year-round warming are consistent with observed mid-Holocene vegetation patterns. Feedbacks also impact on precipitation. The atmospheric response to orbital-forcing reduces precipitation throughout the year; the most marked changes occur in the mid-latitudes in summer. Ocean feedback reduces aridity during autumn, winter and spring, but does not affect summer precipitation. Vegetation feedback increases spring precipitation but amplifies summer drying. Synergy between the feedbacks increases precipitation in autumn, winter and spring, and reduces precipitation in summer. The combined changes amplify the seasonal contrast in precipitation in the ocean–atmosphere-vegetation simulation. Enhanced summer drought produces an unrealistically large expansion of temperate grasslands, particularly in mid-latitude Eurasia.