956 resultados para Microstructure of titanium


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous ceramics can be produced by adding starch (corn, potato) and protein (animal or vegetable) to raw material as pore forming element. In this study, titanium dioxide ceramics were formed by vegetable protein consolidation. Soybean was chosen as the binding agent and pore forming. The samples, which were produced in cylindrical shape, had the following processing: material mixture, gelling, drying, pre-sintering and sintering. Heated platinum microscopy were performed by using suspensions with different compositions in order to verify protein gelling capacity and better know the temperature in which this process occurs. The samples were characterized by apparent porosity and roughness measurement. Besides, imaging by light microscopy was also performed in order to determine the sample morphology and porosity. © (2012) Trans Tech Publications, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal machining is the complex process due the used cutting parameters. In metal cutting process, materials of workpiece differ widely in their ability to deform plastically, to fracture and to sustain tensile stresses. Moreover, the material involved in the process has a great influence in these operations. The Ti-6Al-4V alloy is very used in the aeronautical industry, mainly in the manufacture of engines, has very important properties such the mechanical and corrosion resistance in high te mperatures. The turning of the Ti-Al-4V alloy is very difficult due the rapid tool wear. Such behavior result of the its low thermal conductivity in addition the high reactivity with the cutting tool. The formed chip is segmented and regions of the large deformation named shear bands plows formed. The machinability of the cutting process can be evaluated by several measures including power consume, machined surface quality, tool wear, tool life, microstructure and morphology of the obtained chip. This paper studies the effect of cutting parameters, speed and feed rates, in the tool wear and chip properties using uncoating cemented carbide tool. Microe-structural characterization of the chip and tool wear was performed using scanning electron microscopy (SEM) and Light Optical Mcroscopy (LOM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work aims to study the microstructure and mechanical properties of titanium alloys, widely used in the manufacture of orthopedic implants in order to compare a new manufacturing technology of implants, rapid prototyping in metals with conventional manufacturing processes. Rapid prototyping is being used in many areas of human knowledge to assist in the study and often in the manufacture of components for their own use. Nowadays with the advancement of software and equipment such as computed tomography and magnetic resonance imaging, we can reproduce any part of the human body in three-dimensional images with great perfection and it is used in the reproduction of implants, scaffolds, material aid and preparation in surgery. This work aims to do: A comparison between the microstructure of the alloy in the two manufacturing processes (prototyping and conventional), showing the grain size, the nature, form, quantity, and distribution of various ingredients or certain inclusions and study of mechanical properties of titanium in both cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ti-15Mo-xNb system integrates a new class of titanium alloys without the presence of aluminum and vanadium, which exhibit cytotoxicity, and that have low elasticity modulus values (below 100 GPa). This occurs because these alloys have a beta structure, which is very attractive for use as biomaterials. In addition, Brazil has about 90% of the world’s resources of niobium, which is very important economically. It strategically invests in research on the development and processing of alloys containing this element. In this paper, a study of the influence of heat treatments on the structure and microstructure of the alloys of a Ti-15Mo-xNb system is presented. The results showed grain grown with heat treatment and elongated and irregular grains after lamination due to this processing. After quenching, there were no changes in the microstructure in relation to heat-treated and laminated conditions. These results corroborate the x-ray diffraction results, which showed the predominance of the β phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium alloys have excellent biocompatibility, and combined with their low elastic modulus, become more efficient when applied in orthopedic prostheses. Samples of Ti-15Mo-Zr and Ti-15Zr-Mo system alloys were prepared using an arc-melting furnace with argon atmosphere. The chemical quantitative analysis was performed using an optical emission spectrometer with inductively coupled plasma and thermal conductivity difference. The X-ray diffractograms, allied with optical microscopy, revealed the structure and microstructure of the samples. The mechanical analysis was evaluated by Vickers microhardness measurements. The structure and microstructure of alloys were sensitive to molybdenum and zirconium concentration, presenting α′, α″ and β phases. Molybdenum proved to have greater β-stabilizer action than zirconium. Microhardness was changed with addition of molybdenum and zirconium, having Ti-15Zr-10Mo (436 ± 2 HV) and Ti-15Mo-10Zr (378 ± 4 HV) the highest values in each system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past, several modifications of specific surface properties such as topography, structure, chemistry, surface charge, and wettability have been investigated to predictably improve the osseointegration of titanium implants. The aim of the present review was to evaluate, based on the currently available evidence, the impact of hydrophilic surface modifications of titanium for dental implants. A surface treatment was performed to produce hydroxylated/hydrated titanium surfaces with identical microstructure to either acid-etched, or sand-blasted, large grit and acid-etched substrates, but with hydrophilic character. Preliminary in vitro studies have indicated that the specific properties noted for hydrophilic titanium surfaces have a significant influence on cell differentiation and growth factor production. Animal experiments have pointed out that hydrophilic surfaces improve early stages of soft tissue and hard tissue integration of either nonsubmerged or submerged titanium implants. This data was also corroborated by the results from preliminary clinical studies. In conclusion, the present review has pointed to a potential of hydrophilic surface modifications to support tissue integration of titanium dental implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear Elastic Fracture Mechanics has been used to study the microstructural factors controlling the strength and toughness of two alpha-beta, titanium alloys. Fracture toughness was found to be independent of orientation for alloy Ti/6A1/4-V, but orientation dependent for IMI 700, bend and tension specimens giving similar toughness values. Increasing the solution temperature led to the usual inverse relationship between strength and toughness, with toughness becoming a minimum as the beta transus was approached. The production of a double heat treated microstructure led to a 100% increase in toughness in the high strength alloy and a 20% increase in alloy Ti/6A1/4V, with little decrease in strength. The double heat treated microstruoture was produced by cooling from the beta field into the alpha beta field, followed. by conventional solution treatment and ageing. Forging above the beta transus led to an increase in toughness over alpha beta forging in the high strength alloy, but had little effect on the toughness of Ti/6A1/4V. Light and electron microscopy showed that the increased toughness resulted from the alpha phase being changed from mainly continuous to a discontinuous platelet form in a transformed beta matrix. Void formation occurred at the alpha-beta interface and crack propagation was via the interface or across the platelet depending on which process required the least energy. Varying the solution treatment temperature produced a varying interplatelet spacing and platelet thickness. The finest interplatelet spacing was associated with the highest toughness, since a higher applied stress was required to give the necessary stress concentration to initiate void formation. The thickest alpha platelet size gave the highest toughness which could be interpreted in terms of Krafftt's "process zone size" and the critical crack tip displacement criterion by Hahn and Rosenfield from an analysis by Goodier and Field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is part of a general effort to demonstrate the effect of the bulk microstructure of titanium as a model bone implant material on viability of osteoblasts (bone-forming cells). The objective of this work was to study the proliferation of preosteoblastic MC3T3-E1 cells extracted from mice embryos on commercial purity titanium substrates. Two distinct states of titanium were considered: as-received material with an average grain size of 4.5 microm and that processed by equal channel angular pressing (ECAP), with an average grain size of 200 nm. We report the first results of an in vitro study into the effect of this extreme grain refinement on viability and proliferation of MC3T3-E1 cells. By means of MTT assays it was demonstrated that ECAP processing of titanium enhances MC3T3-E1 culture proliferation in a spectacular way. This finding suggests that bone implants made from ECAP processed titanium may promote bone tissue growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a series of Ti-xNb-yMo (x = 5-40 wt.% in 5 wt.% increments; and y = 3, 5, 10 wt%) alloys were fabricated by powder metallurgy and studied with respect to their microstructures, compressive mechanical properties and hardness. Increases in Nb and Mo content led to decreases in compressive and yield strengths, elastic modulus and hardness of the sintered alloys. Among the studied alloys, Ti-10Nb-3Mo alloy exhibited the optimum combination of strength and ductility. Alloys with a lower amount of Nb (≤ 25 wt.%) and Mo (≤ 5 wt.%) developed Widmanstätten structure, while further increase in Nb and Mo additions led to the microstructure predominantly consisting of β phase with varying regions of α + β phase. The effects of sintering temperature on elastic modulus and hardness were also investigated for Ti-xNb-3Mo alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is generally believed that thermo-hydrogen processing has a beneficial effect on tensile ductility and fatigue properties of titanium. This study was concerned with investigating whether this also applies to titanium of commercial purity (CP) with an ultrafine-grained structure obtained by equal-channel angular pressing (ECAP). It was shown that despite the possibility to manipulate the microstructure of titanium the thermo-hydrogen processing offers, temporary hydrogenation was not able to improve ductility and low cycle fatigue life of CP titanium over the levels achievable by straight ECAP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of Fe-TiC metal matrix composite during metal deposition with laser and arc welding techniques is of technical and economic interest for hard surfacing of engineering components. Recent studies linked the resistance to abrasive wear with the size and morphology of TiC precipitates, which are strongly dependent on the deposition conditions and, more importantly, on the alloy chemistry. In this study, the effect of silicon and manganese on the TiC precipitates was explored and different processing conditions were assessed. The characterisation included optical and scanning electron microscopy, X-ray diffraction and microhardness testing. The results indicate that silicon and manganese can have a significant effect on TiC size and morphology. Therefore, the composition of the matrix alloy offers an effective pathway to modify the microstructure of in-situ precipitated Fe-TiC metal matrix composites. © 2013 Elsevier B.V.