943 resultados para Microalgae. Biofuel. Photobioreactor. Transesterification
Resumo:
The cyanobacterium Microcystis aeruginosa strain NPCD-1, isolated from sewage treatment plant and characterized as a non-microcystin producer by mass spectrometry and molecular analysis, was found to be a source of lipid when cultivated in ASM-1 medium at 25 degrees C under constant white fluorescent illumination (109 mu mol photon m(-2) s(-1)). In these conditions, biomass productivity of 46.92 +/- 3.84 mg L-1 day(-1) and lipid content of 28.10 +/- 1.47% were obtained. Quantitative analysis of fatty acid methyl esters demonstrated high concentration of saturated fatty acids (50%), palmitic (24.34%) and lauric (13.21%) acids being the major components. The remaining 50% constituting unsaturated fatty acids showed higher concentrations of oleic (26.88%) and linoleic (12.53%) acids. The feasibility to produce biodiesel from this cyanobacterial lipid was demonstrated by running enzymatic transesterification reactions catalyzed by Novozym (R) 435 and using palm oil as feedstock control. Batch experiments were carried out using tert-butanol and iso-octane as solvent. Results showed similarity on the main ethyl esters formed for both feedstocks. The highest ethyl ester concentration was related to palmitate and oleate esters followed by laurate and linoleate esters. However, both reaction rates and ester yields were dependent on the solvent tested. Total ethyl ester concentrations varied in the range of 44.24-67.84 wt%, corresponding to ester yields from 80 to 100%. Iso-octane provided better solubility and miscibility, with ester yield of 98.10% obtained at 48 h for reaction using the cyanobacterium lipid, while full conversion was achieved in 12 h for reaction carried out with palm oil. These results demonstrated that cyanobacterial lipids from M. aeruginosa NPCD-1 have interesting properties for biofuel production. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The present study aimed at evaluating the production of Arthrospira platensis in tubular photobioreactor using CO2 from ethanol fermentation. The results of these cultivations were compared to those obtained using CO2 from cylinder at different protocols of simultaneous ammonium sulfate and sodium nitrate feeding. Maximum cell concentration (X-m), cell productivity (P-x), nitrogen-to-cell conversion factor (Y-X/N), and biomass composition (total lipids and proteins) were selected as responses and evaluated by analysis of variance. The source of CO2 did not exert any significant statistical influence on these responses, which means that the flue gas from ethanol fermentation could successfully be used as a carbon source as well as to control the medium pH, thus contributing to reduce the greenhouse effect. The results taken as a whole demonstrated that the best combination of responses mean values (X-m = 4.543 g L-1; P-x = 0.460 g L-1 d(-1); Y-X/N = 15.6 g g(-1); total lipids = 8.39%; total proteins = 18.7%) was obtained using as nitrogen source a mixture of 25% NaNO3 and 75% (NH4)(2)SO4, both expressed as nitrogen. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Arthrospira platensis was cultivated in tubular photobioreactor in order to evaluate growth and biomass production at variable photosynthetic photon flux density (PPFD?=?60, 120, and 240?mu mol photons m-2?s-1) and employing three different systems for cell circulation, specifically an airlift, a motor-driven pumping and a pressurized system. The influence of these two independents variables on the maximum cell concentration (Xm), cell productivity (Px), nitrogen-to-cell conversion factor (YX/N), photosynthetic efficiency (PE), and biomass composition (total lipids and proteins), taken as responses, was evaluated by analysis of variance. The statistical analysis revealed that the best combination of responses' mean values (Xm?=?4,055?mg?L-1, Px?=?406?mg?L-1?day-1, YX/N?=?5.07?mg?mg-1, total lipids?=?8.94%, total proteins?=?30.3%, PE?=?2.04%) was obtained at PPFD?=?120?mu mol photons m-2?s-1; therefore, this light intensity should be considered as the most well-suited for A. platensis cultivation in this photobioreactor configuration. The airlift system did not exert any significant positive statistical influence on the responses, which suggests that this traditional cell circulation system could successfully be substituted by the others tested in this work. Biotechnol. Bioeng. 2012; 109:444450. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Microalgae cultures are attracting great attentions in many industrial applications. However, one of the technical challenges is to cut down the capital and operational costs of microalgae production systems, with special difficulty in reactor design and scale-up. The thesis work open with an overview on the microalgae cultures as a possible answer to solve some of the upcoming planet issues and their applications in several fields. After the work offers a general outline on the state of the art of microalgae culture systems, taking a special look to the enclosed photobioreactors (PBRs). The overall objective of this study is to advance the knowledge of PBRs design and lead to innovative large scale processes of microalgae cultivation. An airlift flat panel photobioreactor was designed, modeled and experimentally characterized. The gas holdup, liquid flow velocity and oxygen mass transfer of the reactor were experimentally determined and mathematically modeled, and the performance of the reactor was tested by cultivation of microalgae. The model predicted data correlated well with experimental data, and the high concentration of suspension cell culture could be achieved with controlled conditions. The reactor was inoculated with the algal strain Scenedesmus obliquus sp. first and with Chlorella sp. later and sparged with air. The reactor was operated in batch mode and daily monitored for pH, temperature, and biomass concentration and activity. The productivity of the novel device was determined, suggesting the proposed design can be effectively and economically used in carbon dioxide mitigation technologies and in the production of algal biomass for biofuel and other bioproducts. Those research results favored the possibility of scaling the reactor up into industrial scales based on the models employed, and the potential advantages and disadvantages were discussed for this novel industrial design.
Resumo:
Apesar de ser considerado um combustível sustentável, o etanol, produzido a partir da cana de açúcar, deixa um passivo de grandes proporções durante seu processo produtivo, a vinhaça, que vem sendo depositada nas próprias lavouras de cana de açúcar. É gerada na proporção de 12 litros para cada litro de etanol produzido em média, sendo rica em diversos nutrientes, os quais podem ser aproveitados para diversos fins como, por exemplo, meio de cultivo para microalgas. A presente pesquisa avaliou em uma primeira etapa a clarificação da vinhaça por um processo de coagulação com auxílio de um polímero catiônico, seguida de uma etapa de microfiltração tangencial em filtro de fibras ocas, o que permitiu uma redução superior a 77% para a cor aparente, de 99% para a turbidez e de 20% para a DQO, facilitando a utilização deste efluente para o cultivo de microalgas. Numa segunda etapa, foi avaliado o cultivo da microalga Chlorella vulgaris, em escala de bancada e operação em batelada, em meio preparado a partir da diluição da vinhaça em água de poço profundo, obtendo um aumento na biomassa produzida, determinado em termos de clorofila-a, em concentrações de vinhaça inferiores a 7,5% utilizando inóculo da ordem de 106 indivíduos. Tais dados permitiram a realização de ensaios de cultivo em escala contínua, com fotobiorreatores em escala piloto, gerando assim a biomassa utilizada nas próximas fases do estudo, que avaliaram a separação da biomassa gerada pelo processo de flotação por ar dissolvido. Os ensaios inicialmente realizados em escala de bancada e operados em batelada permitiram identificar as condições ótimas de operação, as quais foram então avaliadas em um flotador operando em fluxo contínuo. Tal flotador permitiu a obtenção de um lodo com teor de sólidos superior a 2%, o qual foi submetido à um processo final de desaguamento por centrifugação. Os ensaios de desaguamento, permitiram verificar que a utilização do mesmo polímero utilizado na etapa de clarificação permite a obtenção de um lodo mais estável, quando comparado com a não utilização de produto químico, na dosagem de polímero catiônico de 6 g.kg-1. A conclusão deste trabalho permitiu verificar a possibilidade de utilização da vinhaça como meio de cultivo de microalgas, reduzindo assim um dos impactos causados pela produção de etanol. Além disso foi possível verificar o potencial da FAD, para o espessamento de biomassa produzido em fotobiorreatores.
Resumo:
Microalgae have a wide range of application fields, from food to fuels, to pharmaceuticals & fine chemicals, aquaculture and environmental bioremediation, among others. Spirulina and Chlorella have been used as food sources since ancient times, due to their high and balanced nutritional value. Our research group in Lisbon has developed a range of food products (emulsions, gelled desserts, biscuits and pastas) enriched with freshwater and marine microalgae (Spirulina, Chlorella, Haematococcus, Isochrysis and Diacronema). The developed products presented attractive and stable colours, high resistance to oxidation and enhanced rheological properties. Some of these products will be prepared at the Post-Congress Course “Functional Foods Development” at the University of Antofagasta. More recently, a great interest has arisen on using microalgae for biofuel production. The same group has also been exploring several marine and freshwater species for biofuel production (e.g., biodiesel, bioethanol, biohydrogen and biomethane) within a biorefinery approach, in order to obtain high and low-value co-products using integral biomass maximizing the energy revenue. Namely, supercritical fluid extraction of Nannochloropsis sp. allowed the recovery of valuable carotenoids and lipids, prior to bioH2 production through dark fermentation of the residual biomass. Also, Scenedesmus obliquus residues after sugars (for bioethanol) and lipids (for biodiesel) extraction has been anaerobically digested attaining high biomethane yields. Regarding sustainability issues, the current trend of our group is now focused on using liquid effluents and high CO2 levels for low cost microalgae growth, contributing to a lower water demand, primary energy consumption and global warming potential by reducing the need for potable water and fertilizers (P, N) and increasing CO2 mitigation. Microalgae biomass has been successfully used for urban wastewater treatment with subsequent bioH2 production, in a biorefinery approach. Presently, ammonium-rich raw effluents from piggeries and poultry industry are being effectively used for microalgae growth avoiding any pre-treatment step.
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
A simple, fast, and complete route for the production of methylic and ethylic biodiesel from tucum oil is described. Aliquots of the oil obtained directly from pressed tucum (pulp and almonds) were treated with potassium methoxide or ethoxide at 40 degrees C for 40 min. The biodiesel form was removed from the reactor and washed with 0.1 M HCl aqueous solution. A simple distillation at 100 degrees C was carried out in order to remove water and alcohol species from the biodiesel. The oxidative stability index was obtained for the tucum oil as well as the methylic and ethylic biodiesel at 6.13, 2.90, and 2.80 h, for storage times higher than 8 days. Quality control of the original oil and of the methylic and ethylic biodiesels, such as the amount of glycerin produced during the transesterification process, was accomplished by the TLC, GC-MS, and FT-IR techniques. The results obtained in this study indicate a potential biofuel production by simple treatment of tucum, an important Amazonian fruit.
Resumo:
Blast furnace gas yield is essentially controlled by a gas-solid reaction phenomenon, which strongly influences hot metal manufacturing costs. As a result of rising prices for reducing agents on the international market, Companhia Siderurgica Nacional decided to inject natural gas into its blast furnaces. With more gas inside the furnace, the burden permeability became even more critical. To improve blast furnace gas yield, a new technological approach was adopted; raising the metallic burden reaction surface. To that end, a special sinter was developed with permeability being controlled by adding micropore nucleus forming agents, cellulignin coal, without, however, degrading its mechanical properties. This paper shows the main process parameters and the results from physicochemical characterisation of a sinter with controlled permeability, on a pilot scale, compared to those of conventional sinter. Gas flow laboratory simulations have conclusively corroborated the positive effects of micropore nucleus forming agents on enhancing sinter permeability.
Resumo:
The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S. Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S. Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee la. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO(2)e/ha, while our analysis based on the information provided by other authors resulted in 2406 kg CO(2)e/ha, on average. The Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009:34:2905-13] study does not report emissions. When compared to diesel on a energy basis, avoided emissions due to the use of biodiesel account for 80 g CO(2)e/MJ. Thus, avoided life Cycle emissions associated with the use of biodiesel yield a net reduction of greenhouse gas emissions. We also assessed the carbon balance between a palm tree plantation, including displaced emissions from diesel, and a natural ecosystem. Considering the carbon balance outcome plus life cycle emissions the payback time for a tropical forest is 39 years. The result published by Gibbs et al. (2008) [Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, et al., Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters 2008;3:10], which ignores life cycle emissions, determined a payback range for biodiesel production between 30 and 120 years. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
Carbon dioxide released from alcoholic fermentation accounts for 33% of the whole CO(2) involved in the use of ethanol as fuel derived from glucose. As Arthrospira platensis can uptake this greenhouse gas, this study evaluates the use of the CO(2) released from alcoholic fermentation for the production of Arthrospira platensis. For this purpose, this cyanobacterium was cultivated in continuous process using urea as nitrogen source, either using CO(2) from alcoholic fermentation, without any treatment, or using pure CO(2) from cylinder. The experiments were carried out at 120 mu mol photons m(-2) s(-1) in tubular photobioreactor at different dilution rates (0.2 <= D <= 0.8 d(-1)). Using CO(2) from alcoholic fermentation, maximum steady-state cell concentration (2661 +/- 71 mg L(-1)) was achieved at D 0.2 d(-1), whereas higher dilution rate (0.6 d(-1)) was needed to maximize cell productivity (839 mg L(-1) d(-1)). This value was 10% lower than the one obtained with pure CO(2), and there was no significant difference in the biomass protein content. With D 0.8 d(-1), it was possible to obtain 56% +/- 1.5% and 50% +/- 1.2% of protein in the dry biomass, using pure CO(2) and CO(2) from alcoholic fermentation, respectively. These results demonstrate that the use of such cost free CO(2) from alcoholic fermentation as carbon source, associated with low cost nitrogen source, may be a promising way to reduce costs of continuous cultivation of photosynthetic microorganisms, contributing at the same time to mitigate the greenhouse effect. (C) 2011 American Institute of Chemical Engineers Biotechnol. Prog., 27: 650-656, 2011
Resumo:
The behavior of S. platensis was investigated in this study through fed-batch pulse-feeding cultures performed at different carbon dioxide feeding rates (F = 0.44-1.03 g L-1 d(-1)) and photosynthetic photon flux density (PPFD = 80-250 mu mol photons m(-2) s(-1)) in a bench-scale helical photobioreactor. To achieve this purpose, an inorganic medium lacking the carbon source was enriched by gaseous carbon dioxide from a cylinder. The maximum cell concentration achieved was 12.8 g L-1 at PPFD = 166 mu mol photons m(-2) s(-1) and F= 0.44 g L-1 d(-1) of CO2. At PPFD = 80 and 125 mu mol photons m(-2) s(-1), the carbon utilization efficiency (CUE) reached maximum values of 50 and 69%, respectively, after about 20 days, and then it decreased, thus highlighting a photolimitation effect. At PPFD = 166 mu mol photons m(-2) s(-1), CUE was >= 90% between 20 and 50 days. The photosynthetic efficiency reached its maximum value (9.4%) at PPFD = 125 mu mol photons m(-2) s(-1). The photoinhibition threshold appeared to strongly depend on the feeding rate: at high PPFD, an increase in the amount of fed CO2 delayed the inhibitory effect on biomass growth, whereas at low PPFD, excess CO2 addition caused the microalga to stop growing. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the use of the electrostatic layer-by-layer (LbL) technique for the preparation of bioanodes with potential application in ethanol/O(2) biofuel cells. More specifically, the LbL technique was employed for immobilization of dehydrogenase enzymes and polyamidoamine (PAMAM) dendrimers onto carbon paper support. Both mono (anchoring only the enzyme alcohol dehydrogenase, ADH) and bienzymatic (anchoring both ADH and aldehyde dehydrogenase, AldDH) systems were tested. The amount of ADH deposited onto the Toray (R) paper was 95 ng cm(-2) per bilayer. Kinetic studies revealed that the LbL technique enables better control of enzyme disposition on the bioanode, as compared with the results obtained with the bioanodes prepared by the passive adsorption technique. The power density values achieved for the mono-enzymatic system as a function of the enzyme load ranged from 0.02 to 0.063 mW cm(-2) for the bioanode containing 36 ADH bilayers. The bioanodes containing a gas diffusion layer (GDL) displayed enhanced performance, but their mechanical stability must be improved. The bienzymatic system generated a power density of 0.12 mW cm(-2). In conclusion, the LbL technique is a very attractive approach for enzyme immobilization onto carbon platform, since it enables strict control of enzyme disposition on the bioanode surface with very low enzyme consumption. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the preparation and application of a novel bioanode for use in ethanol/O(2) biofuel cells based upon immobilization of alcohol dehydrogenase (ADH) and polyamidoamine (PAMAM) dendrimers onto carbon cloth platforms. The power density measurements indicated a direct relationship between the amount of anchored ADH and the anode power values, which increased upon enzyme loading. The power density values ranged from 0.04 to 0.28 mW cm(-2), and the highest power density was achieved with the bioanode prepared with 28 U of ADH, which provided a power density of 0.28 mW cm(-2) at 0.3 V. The latter power output values were the maximum observed, even for higher enzyme concentrations. Stability of the bioanodes was quite satisfactory, since there was no appreciable reduction of enzymatic activity during the measurements. The method of bioanode preparation described here has proven to be very effective. The PAMAM dendrimer represents a friendly environment for the immobilization of enzymes, and it is stable and capable of generating high power density compared to other immobilization methods. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Marine viruses have been shown to affect phytoplankton productivity; however, there are no reports on the effect of viruses on benthic microalgae (microphytobenthos). Hence, this study investigated the effects of elevated concentrations of virus-like particles on the photosynthetic physiology and community composition of benthic microalgae and phytoplankton. Virus populations were collected near the sediment surface and concentrated by tangential flow ultrafiltration, and the concentrate was added to benthic and water column samples that were obtained along a eutrophication gradient in the Brisbane River/Moreton Bay estuary, Australia. Photosynthetic and community responses of benthic microalgae, phytoplankton and bacteria were monitored over 7 d in aquaria and in situ. Benthic microalgal communities responded to viral enrichment in both eutrophic and oligotrophic sediments. In eutrophic sediments, Euglenophytes (Euglena sp.) and bacteria decreased in abundance by 20 to 60 and 26 to 66%, respectively, from seawater controls. In oligotrophic sediments, bacteria decreased in abundance by 30 to 42% from seawater controls but the dinoflagellate Gymnodinium sp. increased in abundance by 270 to 3600% from seawater controls, The increased abundance of Gymnodinium sp. may be related to increased availability of dissolved organic matter released from lysed bacteria. Increased (140 to 190% from seawater controls) initial chlorophyll a fluorescence measured with a pulse-amplitude modulated fluorometer was observed in eutrophic benthic microalgal incubations following virus enrichment, consistent with photosystem II damage. Virus enrichment in oligotrophic water significantly stimulated carbon fixation rates, perhaps due to increased nutrient availability by bacterial lysis. The interpretation of data from virus amendment experiments is difficult due to potential interaction with unidentified bioactive compounds within seawater concentrates. However, these results show that viruses are capable of influencing microbial dynamics in sediments.