994 resultados para Micro-Mechanics
Resumo:
Discrete Element Method (DEM) simulations ofelement tests cam provide significant insight into the micro-mechanics of soil response. It is well established that soil behaviour is strongly dependant on the initial density. Generation of particulate assemblies for three-dimensional DEM analyses must therefore allow for void ratio control. In this paper, different specimen generation approaches for DEM analyses are discussed. A methodology for the generation of assemblies of spherical particles with a specified initial density and stress state is presented. The effects of the different preparation methods on the specimen fabric are then considered in detail. For isotropic consolidation, it is shown that varying the coefficient of inter-particle friction allows control of the specimen void ratio at a specified confining stress. Simulations of anisotropic consolidation, from an initial isotropic stress state, to a final state where sigma(3) = K(0)sigma(1) indicated that the specimen void ratio and fabric are relatively insensitive to the intermediate stress path, provided an intermediate stress along the K(0) line was attained.
Resumo:
Osteoporotic spinal fractures are a major concern in ageing Western societies. This study develops a multi-scale finite element (FE) model of the osteoporotic lumbar vertebral body to study the mechanics of vertebral compression fracture at both the apparent (whole vertebral body) and micro-structural (internal trabecular bone core)levels. Model predictions were verified against experimental data, and found to provide a reasonably good representation of the mechanics of the osteoporotic vertebral body. This novel modelling methodology will allow detailed investigation of how trabecular bone loss in osteoporosis affects vertebral stiffness and strength in the lumbar spine.
Resumo:
Based on the microscopic observations and measurements, the mechanical behavior of the surface-nanocrystallized Al-alloy material at microscale is investigated experimentally and theoretically. In the experimental research, the compressive stress-strain curves and the hardness depth curves are measured. In the theoretical simulation, based on the material microstructure characteristics and the experimental features of the compression and indentation, the microstructure cell models are developed and the strain gradient plasticity theory is adopted. The material compressive stress-strain curves and the hardness depth curves-are predicted and simulated. Through comparison of the experimental results with the simulation results, the material and model parameters are determined.
Resumo:
Problems involving coupled multiple space and time scales offer a real challenge for conventional frameworks of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk metallic glasses, spallation resulting from stress wave, interaction between a probe tip and sample, the simulation of nanoindentation with molecular statistical thermodynamics) are provided to illustrate the three levels of trans-scale problems (problems due to various physical mechanisms at macro-level, problems due to micro-structural evolution at macro/micro-level, problems due to the coupling of atoms/molecules and a finite size body at micro/nano-level) and their formulations. Accordingly, non-equilibrium statistical mechanics, coupled trans-scale equations and simultaneous solutions, and trans-scale algorithms based on atomic/molecular interaction are suggested as the three possible modes of trans-scale mechanics.
Resumo:
本书系统地介绍了材料微尺度力学行为的尺寸效应实验现象,重点介绍了几种代表性的微尺度应变梯度塑性理论及对微尺度实验现象的解释;以及对裂纹尖端微尺度范围内解理断裂的应用。融会贯通的介绍了国内外学者的原创性工作和创新性学术思想。 全书共8章。第1章介绍了应变梯度塑性理论的应用背景及经典微极理论;第2章介绍了金属材料典型的微尺度力学实验现象;第3~7章介绍了几种典型的应变梯度理论及其应用;第8章介绍了应变梯度理论在微观断裂力学中的应用。 本书适合从事固体微尺度力学、先进材料的微结构设计与力学性能优化、微机电和微电子元件力学行为研究的科技工作者及工程师使用和参考,也可供力学专业及材料专业的高年级本科生和研究生阅读参考。
Resumo:
Liquefaction is a devastating instability associated with saturated, loose, and cohesionless soils. It poses a significant risk to distributed infrastructure systems that are vital for the security, economy, safety, health, and welfare of societies. In order to make our cities resilient to the effects of liquefaction, it is important to be able to identify areas that are most susceptible. Some of the prevalent methodologies employed to identify susceptible areas include conventional slope stability analysis and the use of so-called liquefaction charts. However, these methodologies have some limitations, which motivate our research objectives. In this dissertation, we investigate the mechanics of origin of liquefaction in a laboratory test using grain-scale simulations, which helps (i) understand why certain soils liquefy under certain conditions, and (ii) identify a necessary precursor for onset of flow liquefaction. Furthermore, we investigate the mechanics of liquefaction charts using a continuum plasticity model; this can help in modeling the surface hazards of liquefaction following an earthquake. Finally, we also investigate the microscopic definition of soil shear wave velocity, a soil property that is used as an index to quantify liquefaction resistance of soil. We show that anisotropy in fabric, or grain arrangement can be correlated with anisotropy in shear wave velocity. This has the potential to quantify the effects of sample disturbance when a soil specimen is extracted from the field. In conclusion, by developing a more fundamental understanding of soil liquefaction, this dissertation takes necessary steps for a more physical assessment of liquefaction susceptibility at the field-scale.
Resumo:
Micro-electronic displays are indispensible devices used in high performance applications such as aerospace, medical, marine and industrial sectors.These devices provide an interface to real time mission critical devices and therefore require good optical visual performance and high reliability, all this within varied and challenging environments.
Resumo:
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.
Resumo:
A coupled SPH-DEM based two-dimensional (2-D) micro-scale single cell model is developed to predict basic cell-level shrinkage effects of apple parenchyma cells during air drying. In this newly developed drying model, Smoothed Particle Hydrodynamics (SPH) is used to model the low Reynolds Number fluid motions of the cell protoplasm, and a Discrete Element Method (DEM) is employed to simulate the polymer-like cell wall. Simulations results reasonably agree with published experimental drying results on cellular shrinkage properties such as cellular area, diameter and perimeter. These preliminary results indicate that the model is effective for the modelling and simulation of apple parenchyma cells during air drying.
Resumo:
Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.
Resumo:
This contribution outlines Synchrotron-based X-ray micro-tomography and its potential use in structural geology and rock mechanics. The paper complements several recent reviews of X-ray microtomography. We summarize the general approach to data acquisition, post-processing as well as analysis and thereby aim to provide an entry point for the interested reader. The paper includes tables listing relevant beamlines, a list of all available imaging techniques, and available free and commercial software packages for data visualization and quantification. We highlight potential applications in a review of relevant literature including time-resolved experiments and digital rock physics. The paper concludes with a report on ongoing developments and upgrades at synchrotron facilities to frame the future possibilities for imaging sub-second processes in centimetre-sized samples.
Resumo:
This thesis developed a high preforming alternative numerical technique to investigate microscale morphological changes of plant food materials during drying. The technique is based on a novel meshfree method, and is more capable of modeling large deformations of multiphase problem domains, when compared with conventional grid-based numerical modeling techniques. The developed cellular model can effectively replicate dried tissue morphological changes such as shrinkage and cell wall wrinkling, as influenced by moisture reduction and turgor loss.
Resumo:
Red blood cells (RBCs) exhibit different types of motions and deformations when the blood flows through capillaries. Interestingly, due to the complex three-dimensional structure of the RBC membrane, RBCs show three-dimensional motions and deformations in the blood flow. These motions and deformations of the RBCs highly depend on the stiffness of the RBC membrane and on the geometrical parameters of the capillary through which blood flows. However, capillaries always do not have uniform cross sections and some capillaries have stenosed segments, where cross sectional area suddenly reduces. Further, some diseases can alter the stiffness of the RBC membrane drastically. In this study, the deformation behaviour of a single three-dimensional RBC is examined, when it moves through a stenosed capillary. A three-dimensional spring network is used to model the RBC membrane. The RBC’s inside and outside fluids are discretized into a finite number of mass points and treated by smoothed particle hydrodynamics (SPH) method. The capillary is considered as a rigid tube with a stenosed section. The deformation index, mean velocity and total energy of the RBC are analysed when it flows through the stenosed capillary. Further, motion and deformation of the RBCs with different membrane stiffness (KB) are compared when they flow through the stenosed segment of the capillary. The simulation results demonstrate the RBCs are subjected to a larger deformation when they move through the stenosed part of the capillary and the RBCs with lower KBvalues easily pass through the stenosed segment of the capillary. Further, RBCs having higher KBvalues have a lower mean velocity and it leads to slow down the overall blood flow rate