857 resultados para Mg-al Alloys


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die-cast Mg-4Al-4RE-0.4Mn (RE = Ce-rich mischmetal) and Mg-4Al-4La-0.4Mn magnesium alloys were prepared successfully and their microstructure, tensile and creep properties have been investigated. The results show that two binary Al-RE phases, Al11RE3 and Al2RE, are formed along grain boundaries in Mg-4Al-4RE-0.4Mn alloy, while the phase compositions of Mg-4Al-4La-0.4Mn alloy mainly consist of alpha-Mg phase and Al11La3 phase. And in Mg-4Al-4La-0.4Mn alloy the Al11La3 phase occupies a large grain boundary area and grows with complicated morphologies, which is characterized by scanning electron microscopy in detail. Changing the rare earth content of the alloy from Ce-rich mischmetal to lanthanum gives a further improvement in the tensile and creep properties, and the later could be attributed to the better thermal stability of Al11La3 phase in Mg-4Al-4La-0.4Mn alloy than that of Al11RE3 phase in Mg-4Al-4RE-0.4Mn alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of gas tungsten are welding on the microstructure and electrochemical corrosion of Al-Zn-Mg-Fe alloys submitted to different heat treatments (as fabricated, annealed and aged) has been studied using optical microscopy, SEM, TEM, EDX, cyclic voltammetry and corrosion potential measurements in chloride solutions. The electrochemical techniques were very sensitive to the change in the phase compositions produced by welding. Welding caused a decrease in the mean grain size, in the hardness and in the corrosion resistance of the age-hardened alloys. The structure of the latter became strongly altered by welding to lead to phase compositions very close to those of the cold rolled and annealed specimens. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative study of the mechanical properties of 20 experimental alloys has been carried out. The effect of different contents of Si, Cu, Mg, Fe and Mn, as well as solidification rate, has been assessed using a strength-ductility chart and a quality index-strength chart developed for the alloys. The charts show that the strength generally increases and the ductility decreases with an increasing content of Cu and Mg. Increased Fe (at Fe/Mn ratio 0.5) dramatically lowers the ductility and strength of low Si alloys. Increased Si content generally increases the strength and the ductility. The increase in ductility with increased Si is particularly significant when the Fe content is high. The charts are used to show that the cracking of second phase particles imposes a limit to the maximum achievable strength by limiting the ductility of strong alloys. The (Cu + Mg) content (at.%), which determines the precipitation strengthening and the volume fraction of Cu-rich and Mg-rich intermetallics, can be used to select the alloys for given strength and ductility, provided the Fe content stays below the Si-dependent critical level for the formation of pre-eutectic alpha-phase particles or beta-phase plates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model for the crystallography and morphology of diffusion-controlled phase transformations - edge-to-edge matching - has been used to predict the orientation relationships (OR) and habit planes of precipitates Mg17Al12 in Mg-Al alloy, Mg24Y5 in Mg-Y alloy and alpha-Mn in Mg-Mn alloy. Based on the crystal structures and lattice parameters only, the model predicts that the possible ORs between Mg17Al12 and Mg matrix are the near Burgers OR, the Potter OR, the Gjonnes-Ostmoe OR and the Crawley OR. In the Mg-Y alloy, the OR between Mg24Y5 precipitates and the Mg matrix is predicted to be the Burgers OR only. The model also predicts that there are no reproducible ORs between alpha-Mn and Mg in the Mg-Mn alloy. Combining the edge-to-edge matching model and W. Zhang's Deltag approach, the habit plane and side facets of the precipitate for each OR can be determined. All the predicted ORs and the corresponding habit planes in Mg-Al and Mg-Y alloys agree very well with the experimental results. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manganese is a grain refiner for high purity Mg-3%Al, Mg-6%Al, Mg-9%Al, and commercial AZ31 (Mg-3%Al-1%Zn) alloys when introduced in the form of an Al-60%Mn master alloy splatter but the use of pure Mn flakes and ALTAB (TM) Mn75 tablets shows no grain refinement. Long time holding of the melt at 730 degrees C leads to an increase in grain size. The mechanism is attributed to the presence of all epsilon-AlMn phase (hexagonal close-packed) in the master alloy splatter. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium alloys are attracting increasing research interests due to their low density, high specific strength, good machinability and availability as compared to other structural materials. However, the deformation and failure mechanisms of nanocrystalline (nc) Mg alloys have not been well understood. In this work, the deformation behaviour of nc Mg-5Al alloys was investigated using compression test, with focus on the effects of grain size. The average grain size of the Mg- Al alloy was changed from 13 to 50 nm via mechanical milling. The results showed that grain size had a significant influence on the yield stress and ductility of the Mg alloys, and the materials exhibited increased strain rate sensitivity with a decrease in grain size. The deformation mechanisms were also strongly dependent on the grain sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminium nitride (AlN)-Al matrices reinforced with Al2O3 particulate have been fabricated by reactive infiltration of Al-2% Mg alloy into Al2O3 preforms in N-2 in the temperature range of 900-1075 degreesC. The growth of composites of useful thickness was facilitated by the presence of a Mg-rich external getter, in the absence of which composite growth is self-limiting and terminates prematurely. Successful growth of composites has been attributed to the reduction in residual oxygen partial pressure brought about by the reaction with oxygen of highly volatile Mg in the getter alloy. The microstructure of the matrix consists of AlN-rich regions contiguous with the particulate with metal-rich channels in-between, thereby suggesting that nitridation initiates by preferential wicking of alloy along the particle surfaces. The increase in nitride content of the matrix with temperature is consistent with hardness values that vary between similar to3 and 10 GPa. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tensile deformation behavior of a range of supersaturated Mg-Al solid solutions and an as-cast magnesium alloy AM60 has been studied. The Mg-Al alloys were tested at room temperature while the alloy AM60 was tested in the temperature range 293-573 K. The differences in the deformation behavior of the alloys is discussed in terms of hardening and softening processes. In order to identify which processes were active, the stress dependence of the strain-hardening coefficient was assessed using Lukac and Balik's model of hardening and softening. The analysis indicates that hardening involves solid solution hardening and interaction with forest dislocations and non-dislocation obstacles such as second phase particles. Cross slip is not a significant recovery process in the temperature range 293-423 K. At temperatures between 473 and 523 K the analysis suggests that softening is controlled by cross slip and climb of dislocations. At temperatures above 523 K softening seems to be controlled by dynamic recrystallisation. (C) 2004 Elsevier B.V. All rights reserved.