964 resultados para Metodologia box- jenkins
Resumo:
OBJECTIVE: To determine health care costs and economic burden of epidemiological changes in diseases related to tobacco consumption. METHODS: A time-series analysis in Mexico (1994-2005) was carried out on seven health interventions: chronic obstructive pulmonary diseases, lung cancer with and without surgical intervention, asthma in smokers and non-smokers, full treatment course with nicotine gum, and full treatment course with nicotine patch. According with Box-Jenkins methodology, probabilistic models were developed to forecast the expected changes in the epidemiologic profile and the expected changes in health care services required for selected interventions. Health care costs were estimated following the instrumentation methods and validated with consensus technique. RESULTS: A comparison of the economic impact in 2006 vs. 2008 showed 20-90% increase in expected cases depending on the disease (p<0.05), and 25-93% increase in financial requirements (p<0.01). The study data suggest that changes in the demand for health services for patients with respiratory diseases related to tobacco consumption will continue showing an increasing trend. CONCLUSIONS: In economic terms, the growing number of cases expected during the study period indicates a process of internal competition and adds an element of intrinsic competition in the management of preventive and curative interventions. The study results support the assumption that if preventive programs remain unchanged, the increasing demands for curative health care may cause great financial and management challenges to the health care system of middle-income countries like Mexico.
Resumo:
Na sociedade actual, é cada vez mais difícil desassociar o ambiente financeiro do ambiente social, tendo o primeiro influência directa ou indirecta em praticamente todos os aspectos da sociedade. A esta influência está associada a vasta quantidade de informação e serviços financeiros que possibilitam uma melhor compreensão do ambiente socioeconómico actual, permitindo também o estudo das evoluções e das dinâmicas dos mercados financeiros. Este trabalho refere-se ao estudo e comparação de algumas ferramentas disponíveis para a análise dinâmica e tentativa de previsão de alguns índices de bolsa escolhidos. Tais métodos a estudar são modelos clássicos como o Autoregressivo, Média Móvel e o Modelo Misto apresentado por Box e Jenkins. São também propostos dois métodos que tentam distanciar-se dos métodos tradicionais por apenas considerarem para a sua previsão os momentos semelhantes ao momento actual que se tenta prever, ao invés de considerar todo o espectro dos dados disponíveis, tal como os métodos clássicos referidos anteriormente.
Resumo:
INTRODUCTION: Forecasting dengue cases in a population by using time-series models can provide useful information that can be used to facilitate the planning of public health interventions. The objective of this article was to develop a forecasting model for dengue incidence in Campinas, southeast Brazil, considering the Box-Jenkins modeling approach. METHODS: The forecasting model for dengue incidence was performed with R software using the seasonal autoregressive integrated moving average (SARIMA) model. We fitted a model based on the reported monthly incidence of dengue from 1998 to 2008, and we validated the model using the data collected between January and December of 2009. RESULTS: SARIMA (2,1,2) (1,1,1)12 was the model with the best fit for data. This model indicated that the number of dengue cases in a given month can be estimated by the number of dengue cases occurring one, two and twelve months prior. The predicted values for 2009 are relatively close to the observed values. CONCLUSIONS: The results of this article indicate that SARIMA models are useful tools for monitoring dengue incidence. We also observe that the SARIMA model is capable of representing with relative precision the number of cases in a next year.
Resumo:
Tässä diplomityössä tutkittiin kysynnän ennustamista Vaasan & Vaasan Oy:n tuotteille. Ensin työssä perehdyttiin ennustamiseen ja sen tarjoamiin mahdollisuuksiin yrityksessä. Erityisesti kysynnän ennustamisesta saatavat hyödyt käytiin läpi. Kysynnän ennustamisesta haettiin ratkaisua erityisesti ongelmiin työvuorosuunnittelussa.Työssä perehdyttiin ennustemenetelmiin liittyvään kirjallisuuteen, jonka oppien perusteella tehtiin koe-ennustuksia yrityksen kysynnän historiadatan avulla. Koe-ennustuksia tehtiin kuudelle eri Turun leipomon koe-tuotteelle. Ennustettavana aikavälinä oli kahden viikon päiväkohtainen kysyntä. Tämän aikavälin erityisesti peruskysynnälle etsittiin ennustetarkkuudeltaan parasta kvantitatiivista ennustemenetelmää. Koe-ennustuksia tehtiin liukuvilla keskiarvoilla, klassisella aikasarja-analyysillä, eksponentiaalisen tasoituksen menetelmällä, Holtin lineaarisella eksponenttitasoituksen menetelmällä, Wintersin kausittaisella eksponentiaalisella tasoituksella, autoregressiivisillä malleilla, Box-Jenkinsin menetelmällä ja regressioanalyysillä. Myös neuroverkon opettamista historiadatalla ja käyttämistä ongelman ratkaisun apuna kokeiltiin.Koe-ennustuksien tulosten perusteella ennustemenetelmien toimintaa analysoitiin jatkokehitystä varten. Ennustetarkkuuden lisäksi arvioitiin mallin yksinkertaisuutta, helppokäyttöisyyttä ja sopivuutta yrityksen monien tuotteiden ennustamiseen. Myös kausivaihteluihin, trendeihin ja erikoispäiviin kiinnitettiin huomiota. Ennustetarkkuuden huomattiin parantuvan selvästi peruskysyntää ennustettaessa, jos ensin historiadata esikäsittelemällä puhdistettiin erikoispäivistä ja –viikoista.
Resumo:
Electricity spot prices have always been a demanding data set for time series analysis, mostly because of the non-storability of electricity. This feature, making electric power unlike the other commodities, causes outstanding price spikes. Moreover, the last several years in financial world seem to show that ’spiky’ behaviour of time series is no longer an exception, but rather a regular phenomenon. The purpose of this paper is to seek patterns and relations within electricity price outliers and verify how they affect the overall statistics of the data. For the study techniques like classical Box-Jenkins approach, series DFT smoothing and GARCH models are used. The results obtained for two geographically different price series show that patterns in outliers’ occurrence are not straightforward. Additionally, there seems to be no rule that would predict the appearance of a spike from volatility, while the reverse effect is quite prominent. It is concluded that spikes cannot be predicted based only on the price series; probably some geographical and meteorological variables need to be included in modeling.
Resumo:
Identification of order of an Autoregressive Moving Average Model (ARMA) by the usual graphical method is subjective. Hence, there is a need of developing a technique to identify the order without employing the graphical investigation of series autocorrelations. To avoid subjectivity, this thesis focuses on determining the order of the Autoregressive Moving Average Model using Reversible Jump Markov Chain Monte Carlo (RJMCMC). The RJMCMC selects the model from a set of the models suggested by better fitting, standard deviation errors and the frequency of accepted data. Together with deep analysis of the classical Box-Jenkins modeling methodology the integration with MCMC algorithms has been focused through parameter estimation and model fitting of ARMA models. This helps to verify how well the MCMC algorithms can treat the ARMA models, by comparing the results with graphical method. It has been seen that the MCMC produced better results than the classical time series approach.
Resumo:
Time series analysis can be categorized into three different approaches: classical, Box-Jenkins, and State space. Classical approach makes a basement for the analysis and Box-Jenkins approach is an improvement of the classical approach and deals with stationary time series. State space approach allows time variant factors and covers up a broader area of time series analysis. This thesis focuses on parameter identifiablity of different parameter estimation methods such as LSQ, Yule-Walker, MLE which are used in the above time series analysis approaches. Also the Kalman filter method and smoothing techniques are integrated with the state space approach and MLE method to estimate parameters allowing them to change over time. Parameter estimation is carried out by repeating estimation and integrating with MCMC and inspect how well different estimation methods can identify the optimal model parameters. Identification is performed in probabilistic and general senses and compare the results in order to study and represent identifiability more informative way.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
The classical methods of analysing time series by Box-Jenkins approach assume that the observed series uctuates around changing levels with constant variance. That is, the time series is assumed to be of homoscedastic nature. However, the nancial time series exhibits the presence of heteroscedasticity in the sense that, it possesses non-constant conditional variance given the past observations. So, the analysis of nancial time series, requires the modelling of such variances, which may depend on some time dependent factors or its own past values. This lead to introduction of several classes of models to study the behaviour of nancial time series. See Taylor (1986), Tsay (2005), Rachev et al. (2007). The class of models, used to describe the evolution of conditional variances is referred to as stochastic volatility modelsThe stochastic models available to analyse the conditional variances, are based on either normal or log-normal distributions. One of the objectives of the present study is to explore the possibility of employing some non-Gaussian distributions to model the volatility sequences and then study the behaviour of the resulting return series. This lead us to work on the related problem of statistical inference, which is the main contribution of the thesis
Resumo:
El objetivo de este paper es avanzar en la comprensión existente acerca del impacto de la innovación (en este caso entendida como la inversión en actividades de innovación) en las exportaciones no tradicionales. El estudio analiza un conjunto de datos de empresas colombianas que desempeñan sus actividades en los sectores de la Clasificación Industrial Internacional Uniforme – CIIU - durante el periodo del 2005 al 2012. Para esto se usó un modelo de datos panel en el cual a través de la teoría Box Jenkins, se lograron identificar las variables estadísticamente significativas en el desempeño de las exportaciones. Los hallazgos permiten comprobar las teorías acerca de la relación positiva entre estas variables, y en nuestro caso particular demostrar el impacto que tienen las actividades de innovación en el desarrollo de las exportaciones. Finalmente los resultados sugieren que el estímulo de la innovación y políticas que la promuevan es esencial para el crecimiento de las exportaciones.
Resumo:
Data from various stations having different measurement record periods between 1988 and 2007 are analyzed to investigate the surface ozone concentration, long-term trends, and seasonal changes in and around Ireland. Time series statistical analysis is performed on the monthly mean data using seasonal and trend decomposition procedures and the Box-Jenkins approach (autoregressive integrated moving average). In general, ozone concentrations in the Irish region are found to have a negative trend at all sites except at the coastal sites of Mace Head and Valentia. Data from the most polluted Dublin city site have shown a very strong negative trend of −0.33 ppb/yr with a 95% confidence limit of 0.17 ppb/yr (i.e., −0.33 ± 0.17) for the period 2002−2007, and for the site near the city of Cork, the trend is found to be −0.20 ± 0.11 ppb/yr over the same period. The negative trend for other sites is more pronounced when the data span is considered from around the year 2000 to 2007. Rural sites of Wexford and Monaghan have also shown a very strong negative trend of −0.99 ± 0.13 and −0.58 ± 0.12, respectively, for the period 2000−2007. Mace Head, a site that is representative of ozone changes in the air advected from the Atlantic to Europe in the marine planetary boundary layer, has shown a positive trend of about +0.16 ± 0.04 ppb per annum over the entire period 1988−2007, but this positive trend has reduced during recent years (e.g., in the period 2001−2007). Cluster analysis for back trajectories are performed for the stations having a long record of data, Mace Head and Lough Navar. For Mace Head, the northern and western clean air sectors have shown a similar positive trend (+0.17 ± 0.02 ppb/yr for the northern sector and +0.18 ± 0.02 ppb/yr for the western sector) for the whole period, but partial analysis for the clean western sector at Mace Head shows different trends during different time periods with a decrease in the positive trend since 1988 indicating a deceleration in the ozone trend for Atlantic air masses entering Europe.
Resumo:
Model-based estimates of future uncertainty are generally based on the in-sample fit of the model, as when Box-Jenkins prediction intervals are calculated. However, this approach will generate biased uncertainty estimates in real time when there are data revisions. A simple remedy is suggested, and used to generate more accurate prediction intervals for 25 macroeconomic variables, in line with the theory. A simulation study based on an empirically-estimated model of data revisions for US output growth is used to investigate small-sample properties.
Resumo:
Ghana faces a macroeconomic problem of inflation for a long period of time. The problem in somehow slows the economic growth in this country. As we all know, inflation is one of the major economic challenges facing most countries in the world especially those in African including Ghana. Therefore, forecasting inflation rates in Ghana becomes very important for its government to design economic strategies or effective monetary policies to combat any unexpected high inflation in this country. This paper studies seasonal autoregressive integrated moving average model to forecast inflation rates in Ghana. Using monthly inflation data from July 1991 to December 2009, we find that ARIMA (1,1,1)(0,0,1)12 can represent the data behavior of inflation rate in Ghana well. Based on the selected model, we forecast seven (7) months inflation rates of Ghana outside the sample period (i.e. from January 2010 to July 2010). The observed inflation rate from January to April which was published by Ghana Statistical Service Department fall within the 95% confidence interval obtained from the designed model. The forecasted results show a decreasing pattern and a turning point of Ghana inflation in the month of July.
Resumo:
Resumo não disponível.
Resumo:
Este trabalho compara procedimentos de previsão de preços de commodities, utilizados de maneira impírica pelos analistas de mercado, com os procedimentos fornecidos pela Análise de Séries Temporais. Aplicamos os métodos de previsão utilizando as Médias Móveis, os métodos baseados em Alisamentos exponenciais e principalmente os modelos ARIMA de Box-Jenkins. Estes últimos são, em geral, generalizações dos primeiros, com a vantagem de utilizar os instrumentos estatísticos de medidas das incertezas, como o desvio-padrão e os intervalos de confiança para as previsões