914 resultados para Meteorological parameters
Resumo:
The Vernagtferner region has a long tradition of glaciological research performed by groups from Munich. It started in 1889, when Prof. Sebastian Finsterwalder from the Technical University in Munich produced the first map of a complete glacier based on terrestrial photogrammetry. Since then, numerous maps of the glacier have been made, describing the change in surface elevation for more than a century. These maps form the basis of the geodetic method of glacier mass balance determination, which provides volume changes as average data for the period between two surveys, i.e. typically for 10 years. Since the start of the glaciological method on Vernagtferner in 1964, annual as well as winter and summer mass balance data are available continuously. But only since 1973, the construction of the Vernagtbach station, approximately 1 km below the glacier margin at that time, provided the means to record a larger number of hydrological and meteorological parameters with a temporal resolution of typically 1 hour.
Resumo:
The first International Polar Year (IPY) was an international effort to perform continous meteorological and geophysical observations over a time period of two years (1882-1883). Eleven nations established twelve research stations in the Arctic along with thirteen auxilary stations. Two stations were operated on the southern hemisphere (South Georgia and Tierra del Fuego). The data were published in 26 volumes on 8700+ pages of reports, descriptions, tables and graphs in total. The list of meteorological parameters includes temperature, wind, pressure, clouds, precipitation, evaporation, humidity and radiation. In the light of Global Change and the intensification of observations and continous measurements in both polar regions, long-time series increase in importance. The observations of the first IPY from the 19th century enable us to extend the data from the 20th century even more back into the past. In the occasion of the fourth IPY (2007-2009) WDC-MARE decided to digitize the complete set of meteorological data in full hourly resolution and publish it in its reports and make it available in Open Access via the data library PANGAEA.
Resumo:
In November 2001, two separate Campbell loggers ("Meteologger" and "Hydrologger", both type CR23X) were installed at the Vernagtbach site in the Oetztal Alps, Austria (Latitude: 46.85; Longitude: 10.82; Elevation: 2640 m). On these loggers, 10-minutes centred averages for the meteorological data and 5-minutes centred averages for the hydrological data are recorded. The meteorological parameters comprise air temperature, humidity of the air, air pressure, four radiation components, wind direction and speed, precipitation and snow height. For air temperature, two records are published, recorded with a ventilated and an unventilated Pt-100 in a Stevenson screen; for precipitation, three time series are available: (I) the cumulative record of a weighing gauge for the whole year, (II) single events derived from (I), and (III) single events from a tipping bucket; (II) and (III) are only provided for the period 1, May to 31, October of each year. Wind records are also given with a time step of one hour, as only these records include several statistics of speed and direction. Hydrological parameters are recorded on the "Hydrologger", they comprise water stage, discharge, water temperature and electrolytic conductivity of the water. An identifying number gives the kind of instrument used in the water stage time series. Daily photographs of the glacier are provided and analysed with respect to precipitation type.
Resumo:
Below cloud scavenging processes have been investigated considering a numerical simulation, local atmospheric conditions and particulate matter (PM) concentrations, at different sites in Germany. The below cloud scavenging model has been coupled with bulk particulate matter counter TSI (Trust Portacounter dataset, consisting of the variability prediction of the particulate air concentrations during chosen rain events. The TSI samples and meteorological parameters were obtained during three winter Campaigns: at Deuselbach, March 1994, consisting in three different events; Sylt, April 1994 and; Freiburg, March 1995. The results show a good agreement between modeled and observed air concentrations, emphasizing the quality of the conceptual model used in the below cloud scavenging numerical modeling. The results between modeled and observed data have also presented high square Pearson coefficient correlations over 0.7 and significant, except the Freiburg Campaign event. The differences between numerical simulations and observed dataset are explained by the wind direction changes and, perhaps, the absence of advection mass terms inside the modeling. These results validate previous works based on the same conceptual model.
Resumo:
Due to their detrimental effects on human health, the scientific interest in ultrafine particles (UFP) has been increasing, but available information is far from comprehensive. Compared to the remaining population, the elderly are potentially highly susceptible to the effects of outdoor air pollution. Thus, this study aimed to (1) determine the levels of outdoor pollutants in an urban area with emphasis on UFP concentrations and (2) estimate the respective dose rates of exposure for elderly populations. UFP were continuously measured over 3 weeks at 3 sites in north Portugal: 2 urban (U1 and U2) and 1 rural used as reference (R1). Meteorological parameters and outdoor pollutants including particulate matter (PM10), ozone (O3), nitric oxide (NO), and nitrogen dioxide (NO2) were also measured. The dose rates of inhalation exposure to UFP were estimated for three different elderly age categories: 64–70, 71–80, and >81 years. Over the sampling period levels of PM10, O3 and NO2 were in compliance with European legislation. Mean UFP were 1.7 × 104 and 1.2 × 104 particles/cm3 at U1 and U2, respectively, whereas at rural site levels were 20–70% lower (mean of 1 ×104 particles/cm3). Vehicular traffic and local emissions were the predominant identified sources of UFP at urban sites. In addition, results of correlation analysis showed that UFP were meteorologically dependent. Exposure dose rates were 1.2- to 1.4-fold higher at urban than reference sites with the highest levels noted for adults at 71–80 yr, attributed mainly to higher inhalation rates.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia do Ambiente
Resumo:
An aeropalynological study was carried out in the atmosphere of Estepona, a very popular tourist resort situated in the "Costa del Sol", (southern Spain) based on the data obtained during a three year air-monitoring programme (March 1995 to March 1998) using a volumetric pollen trap. The 34 taxa that reached a 10-day mean air pollen concentration equal to or greater than 1 grain of pollen/m(3) of air are reflected in the calendar. The first 10 taxa, in order of abundance, were: Cupressaceae, Olea europaea, Quercus, Poaceae, Urticaceae, Plantago, Pinus, Chenopodiaceae-Amaranthaceae, Ericaceae and Castanea, the first 3 of which accounted for approximately 56 % of the annual total pollen count. The greatest diversity of pollen type occurred during spring, while the highest pollen concentrations were reached from February-June, when approximately more than 80 % of the annual total pollen was registered. The lowest concentrations were obtaining during January, August and September. The annual quantity of pollen collected, the intensity and the dates on which the maximum peaks were recorded differed for the 3 years studied, which can be explained by reference to various meteorological parameters, especially rainfall and temperature. The pollen calendar spectrum is typically Mediterranean and similar to those of nearby localities, in which many pollen types are represented and the long tails indicating long flowering periods.
Resumo:
An expert system has been developed that provides 24 hour forecasts of roadway and bridge frost for locations in Iowa. The system is based on analysis of frost observations taken by highway maintenance personnel, analysis of conditions leading to frost as obtained from meteorologists with experience in forecasting bridge and roadway frost, and from fundamental physical principles of frost processes. The expert system requires the forecaster to enter information on recent maximum and minimum temperatures and forecasts of maximum and minimum air temperatures, dew point temperatures, precipitation, cloudiness, and wind speed. The system has been used operationally for the last two frost seasons by Freese-Notis Associates, who have been under contract with the Iowa DOT to supply frost forecasts. The operational meteorologists give the system their strong endorsement. They always consult the system before making a frost forecast unless conditions clearly indicate frost is not likely. In operational use, the system is run several times with different input values to test the sensitivity of frost formation on a particular day to various meteorological parameters. The users comment. that the system helps them to consider all the factors relevant to frost formation and is regarded as an office companion for making frost forecasts.
Resumo:
The thesis gives a general introduction about the topic include India, the spatial and temporal variation of the surface meteorological parameters are dealt in detail. The general pattern of the winds over the region in different seasons and the generation and movements of the thermally and dynamically originated local wind systems of Western Ghats region has been studied. The modification of the prevailing winds over region by the Palghat Gap and its effect on the mouth regions pf the gap is analysed in great depth. The thesis gives the information of climatic elements of the mountain region such as energy budgets, rainfall studies, evaporation and condensation and the variation in the heat fluxes over the region. The impact of orography is studied in a different approach. The type of hypothetical study gives more insight into the control of mountain on the distribution of meteorological parameter over the study region and helps to quantify the impact of the mountain in varying the weather climate of region. The detailed study of the hydro-meteorological aspects of the main river basins of the region also should be included to the climatic studies for the total understanding of the weather and climate over the region.
Resumo:
The thesis attempts to study the changes in oceanographic parameters associated with extreme climatic events,the influence of oceanographic as well as meteorological parameters on fishes.The characteristics of major pelagic fishes of southwest coast of India(Oil sardine and Indian mackerel) have been described here.A description on study area and period of study is also described .The impact of extreme climatic events on the oceanographic variability of Eastern Arabian Sea.The extreme climatic event,the Indian Ocean Dipole associated with EI Nino Southern Oscillation is taken into consideration.The variability in oil sardine and mackerel landings of southwest coast of India during the study period.The trend analysis of the landings has been done and also a prediction model is applied for the landings.The influence of environmental parameters on oil sardine as well as mackerel fishery has been explained .With regression analysis ,the significant relation between environmental parameters and fish landings are also been recognized.The prediction of landings is done with these environmental parameters.
Resumo:
Pollutants that once enter into the earth’s atmosphere become part of the atmosphere and hence their dispersion, dilution, direction of transportation etc. are governed by the meteorological conditions. The thesis deals with the study of the atmospheric dispersion capacity, wind climatology, atmospheric stability, pollutant distribution by means of a model and the suggestions for a comprehensive planning for the industrially developing city, Cochin. The definition, sources, types and effects of air pollution have been dealt with briefly. The influence of various meteorological parameters such as vector wind, temperature and its vertical structure and atmospheric stability in relation to pollutant dispersal have been studied. The importance of inversions, mixing heights, ventilation coefficients were brought out. The spatial variation of mixing heights studies for the first time on a microscale region, serves to delineate the regions of good and poor dispersal capacity. A study of wind direction fluctuation, σθ and its relation to stability and mixing heights were shown to be much useful. It was shown that there is a necessity to look into the method of σθ computation. The development of Gausssian Plume Model along with the application for multiple sources was presented. The pollutant chosen was sulphur dioxide and industrial sources alone were considered. The percentage frequency of occurrence of inversions and isothermals are found to be low in all months during the year. The spatial variation of mixing heights revealed that a single mixing height cannot be taken as a representative for the whole city have low mixing heights and monsoonal months showed lowest mixing heights. The study of ventilation co-efficients showed values less than the required optimum value 6000m2/5. However, the low values may be due to the consideration of surface wind alone instead of the vertically averaged wind. Relatively more calm conditions and light winds during night and strong winds during day time were observed. During the most of the year westerlies during day time and northeasterlies during night time are the dominant winds. Unstable conditions with high values of σθ during day time and stable conditions with lower values of σθ during night time are the prominent features. Monsoonal months showed neutral stability for most of the time. A study σθ of and Pasquill Stability category has revealed the difficulty in giving a unique value of for each stability category. For the first time regression equations have been developed relating mixing heights and σθ. A closer examination of σθ revealed that half of the range of wind direction fluctuations is to be taken, instead of one by sixth, to compute σθ. The spatial distribution of SO2 showed a more or less uniform distribution with a slight intrusion towards south. Winter months showed low concentrations contrary to the expectations. The variations of the concentration is found to be influenced more by the mixing height and the stack height rather than wind speed. In the densely populated areas the concentration is more than the threshold limit value. However, the values reported appear to be high, because no depletion of the material is assumed through dry or wet depositions and also because of the inclusion of calm conditions with a very light wind speed. A reduction of emission during night time with a consequent rise during day time would bring down the levels of pollution. The probable locations for the new industries could be the extreme southeast parts because the concentration towards the north falls off very quickly resulting low concentrations. In such a case pollutant spread would be towards south and west, thus keeping the city interior relatively free from pollution. A more detailed examination of the pollutant spread by means of models that would take the dry and wet depositions may be necessary. Nevertheless, the present model serves to give the trend of the distribution of pollutant concentration with which one can suggest the optimum locations for the new industries
Resumo:
Die Maßnahmen zur Förderung der Windenergie in Deutschland haben wichtige Anstöße zur technologischen Weiterentwicklung geliefert und die Grundlagen für den enormen Anlagenzubau geschaffen. Die installierte Windleistung hat heute eine beachtliche Größenordnung erreicht und ein weiteres Wachstum in ähnlichen Dimensionen ist auch für die nächsten Jahre zu erwarten. Die aus Wind erzeugte elektrische Leistung deckt bereits heute in einigen Netzbereichen die Netzlast zu Schwachlastzeiten. Dies zeigt, dass die Windenergie ein nicht mehr zu vernachlässigender Faktor in der elektrischen Energieversorgung geworden ist. Im Rahmen der Kraftwerkseinsatzplanung sind Betrag und Verlauf der Windleistung des folgenden Tages mittlerweile zu wichtigen und zugleich schwierig zu bestimmenden Variablen geworden. Starke Schwankungen und falsche Prognosen der Windstromeinspeisung verursachen zusätzlichen Bedarf an Regel- und Ausgleichsleistung durch die Systemführung. Das im Rahmen dieser Arbeit entwickelte Prognosemodell liefert die zu erwartenden Windleistungen an 16 repräsentativen Windparks bzw. Gruppen von Windparks für bis zu 48 Stunden im Voraus. Aufgrund von prognostizierten Wetterdaten des deutschen Wetterdienstes (DWD) werden die Leistungen der einzelnen Windparks mit Hilfe von künstlichen neuronalen Netzen (KNN) berechnet. Diese Methode hat gegenüber physikalischen Verfahren den Vorteil, dass der komplexe Zusammenhang zwischen Wettergeschehen und Windparkleistung nicht aufwendig analysiert und detailliert mathematisch beschrieben werden muss, sondern anhand von Daten aus der Vergangenheit von den KNN gelernt wird. Das Prognosemodell besteht aus zwei Modulen. Mit dem ersten wird, basierend auf den meteorologischen Vorhersagen des DWD, eine Prognose für den Folgetag erstellt. Das zweite Modul bezieht die online gemessenen Leistungsdaten der repräsentativen Windparks mit ein, um die ursprüngliche Folgetagsprognose zu verbessern und eine sehr genaue Kurzzeitprognose für die nächsten drei bis sechs Stunden zu berechnen. Mit den Ergebnissen der Prognosemodule für die repräsentativen Standorte wird dann über ein Transformationsmodell, dem so genannten Online-Modell, die Gesamteinspeisung in einem größeren Gebiet berechnet. Das Prognoseverfahren hat seine besonderen Vorzüge in der Genauigkeit, den geringen Rechenzeiten und den niedrigen Betriebskosten, da durch die Verwendung des bereits implementierten Online-Modells nur eine geringe Anzahl von Vorhersage- und Messstandorten benötigt wird. Das hier vorgestellte Prognosemodell wurde ursprünglich für die E.ON-Netz GmbH entwickelt und optimiert und ist dort seit Juli 2001 im Einsatz. Es lässt sich jedoch auch leicht an andere Gebiete anpassen. Benötigt werden dazu nur die Messdaten der Leistung ausgewählter repräsentativer Windparks sowie die dazu gehörenden Wettervorhersagen, um die KNN entsprechend zu trainieren.
Resumo:
In dieser Arbeit werden verschiedene Computermodelle, Rechenverfahren und Methoden zur Unterstützung bei der Integration großer Windleistungen in die elektrische Energieversorgung entwickelt. Das Rechenmodell zur Simulation der zeitgleich eingespeisten Windenergie erzeugt Summenganglinien von beliebig zusammengestellten Gruppen von Windenergieanlagen, basierend auf gemessenen Wind- und Leistungsdaten der nahen Vergangenheit. Dieses Modell liefert wichtige Basisdaten für die Analyse der Windenergieeinspeisung auch für zukünftige Szenarien. Für die Untersuchung der Auswirkungen von Windenergieeinspeisungen großräumiger Anlagenverbünde im Gigawattbereich werden verschiedene statistische Analysen und anschauliche Darstellungen erarbeitet. Das im Rahmen dieser Arbeit entwickelte Modell zur Berechnung der aktuell eingespeisten Windenergie aus online gemessenen Leistungsdaten repräsentativer Windparks liefert wertvolle Informationen für die Leistungs- und Frequenzregelung der Netzbetreiber. Die zugehörigen Verfahren zur Ermittlung der repräsentativen Standorte und zur Überprüfung der Repräsentativität bilden die Grundlage für eine genaue Abbildung der Windenergieeinspeisung für größere Versorgungsgebiete, basierend auf nur wenigen Leistungsmessungen an Windparks. Ein weiteres wertvolles Werkzeug für die optimale Einbindung der Windenergie in die elektrische Energieversorgung bilden die Prognosemodelle, die die kurz- bis mittelfristig zu erwartende Windenergieeinspeisung ermitteln. In dieser Arbeit werden, aufbauend auf vorangegangenen Forschungsarbeiten, zwei, auf Künstlich Neuronalen Netzen basierende Modelle vorgestellt, die den zeitlichen Verlauf der zu erwarten Windenergie für Netzregionen und Regelzonen mit Hilfe von gemessenen Leistungsdaten oder prognostizierten meteorologischen Parametern zur Verfügung stellen. Die softwaretechnische Zusammenfassung des Modells zur Berechnung der aktuell eingespeisten Windenergie und der Modelle für die Kurzzeit- und Folgetagsprognose bietet eine attraktive Komplettlösung für die Einbindung der Windenergie in die Leitwarten der Netzbetreiber. Die dabei entwickelten Schnittstellen und die modulare Struktur des Programms ermöglichen eine einfache und schnelle Implementierung in beliebige Systemumgebungen. Basierend auf der Leistungsfähigkeit der Online- und Prognosemodelle werden Betriebsführungsstrategien für zu Clustern im Gigawattbereich zusammengefasste Windparks behandelt, die eine nach ökologischen und betriebswirtschaftlichen Gesichtspunkten sowie nach Aspekten der Versorgungssicherheit optimale Einbindung der geplanten Offshore-Windparks ermöglichen sollen.
Resumo:
Chemical and meteorological parameters measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the African Monsoon Multidisciplinary Analysis (AMMA) campaign are presented to show the impact of NOx emissions from recently wetted soils in West Africa. NO emissions from soils have been previously observed in many geographical areas with different types of soil/vegetation cover during small scale studies and have been inferred at large scales from satellite measurements of NOx. This study is the first dedicated to showing the emissions of NOx at an intermediate scale between local surface sites and continental satellite measurements. The measurements reveal pronounced mesoscale variations in NOx concentrations closely linked to spatial patterns of antecedent rainfall. Fluxes required to maintain the NOx concentrations observed by the BAe-146 in a number of cases studies and for a range of assumed OH concentrations (1×106 to 1×107 molecules cm−3) are calculated to be in the range 8.4 to 36.1 ng N m−2 s−1. These values are comparable to the range of fluxes from 0.5 to 28 ng N m−2 s−1 reported from small scale field studies in a variety of non-nutrient rich tropical and sub-tropical locations reported in the review of Davidson and Kingerlee (1997). The fluxes calculated in the present study have been scaled up to cover the area of the Sahel bounded by 10 to 20 N and 10 E to 20 W giving an estimated emission of 0.03 to 0.30 Tg N from this area for July and August 2006. The observed chemical data also suggest that the NOx emitted from soils is taking part in ozone formation as ozone concentrations exhibit similar fine scale structure to the NOx, with enhancements over the wet soils. Such variability can not be explained on the basis of transport from other areas. Delon et al. (2008) is a companion paper to this one which models the impact of soil NOx emissions on the NOx and ozone concentration over West Africa during AMMA. It employs an artificial neural network to define the emissions of NOx from soils, integrated into a coupled chemistry-dynamics model. The results are compared to the observed data presented in this paper. Here we compare fluxes deduced from the observed data with the model-derived values from Delon et al. (2008).