832 resultados para Metals - Mechanical properties
Resumo:
The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag–26.5Cu–3Ti and Ag–34.5Cu–1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 °C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag–26.5Cu–3Ti brazing alloy and a brazing temperature of 850 °C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag–34.5Cu–1.5Ti brazing alloy and a brazing temperature of 850 °C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm−2. Nevertheless, the joints produced at 850 °C using a Ag–26.5Cu–3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm−2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.
Resumo:
The present work aims to study the microstructure and mechanical properties of titanium alloys, widely used in the manufacture of orthopedic implants in order to compare a new manufacturing technology of implants, rapid prototyping in metals with conventional manufacturing processes. Rapid prototyping is being used in many areas of human knowledge to assist in the study and often in the manufacture of components for their own use. Nowadays with the advancement of software and equipment such as computed tomography and magnetic resonance imaging, we can reproduce any part of the human body in three-dimensional images with great perfection and it is used in the reproduction of implants, scaffolds, material aid and preparation in surgery. This work aims to do: A comparison between the microstructure of the alloy in the two manufacturing processes (prototyping and conventional), showing the grain size, the nature, form, quantity, and distribution of various ingredients or certain inclusions and study of mechanical properties of titanium in both cases.
Resumo:
Titanium alloys are among the most important and frequently used class of biomaterials. In addition to biocompatibility, it is important that an implant material present satisfactory mechanical properties that allow long term use in the body. To improve such properties, different heat treatments are used, as well as doping with oxygen. The presence of interstitial oxygen in the crystal lattice causes deformation, increases the hardness, and causes modifications in anelasticity, thereby decreasing the elastic modulus. In this study, an alloy was prepared by arc melting precursor metals, heat and mechanically treated, and doped with oxygen, resulting in samples with different processing conditions. In each condition, the alloy was characterised in terms of amount of oxygen, X-ray diffraction, and optical microscopy. In addition, properties of the alloy, such as hardness and elastic modulus, were analysed.
Resumo:
The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although molecular modeling has been used extensively to predict elastic properties of materials, modeling of more complex phenomenon such as fracture has only recently been possible with the development of new force fields such as ReaxFF, which is used in this work. It is not fully understood what molecular modeling parameters such as thermostat type, thermostat coupling, time step, system size, and strain rate are required for accurate modeling of fracture. Selection of modeling parameters to model fracture can be difficult and non-intuitive compared to modeling elastic properties using traditional force fields, and the errors generated by incorrect parameters may be non-obvious. These molecular modeling parameters are systematically investigated and their effects on the fracture of well-known carbon materials are analyzed. It is determined that for coupling coefficients of 250 fs and greater do not result in substantial differences in the stress-strain response of the materials using any thermostat type. A time step of 0.5 fs of smaller is required for accurate results. Strain rates greater than 2.2 ns-1 are sufficient to obtain repeatable results with slower strain rates for the materials studied. The results of this study indicate that further refinement of the Chenoweth parameter set is required to accurately predict the mechanical response of carbon-based systems. The ReaxFF has been used extensively to model systems in which bond breaking and formation occur. In particular ReaxFF has been used to model reactions of small molecules. Some elastic and fracture properties have been successfully modeled using ReaxFF in materials such as silicon and some metals. However, it is not clear if current parameterizations for ReaxFF are able to accurately reproduce the elastic and fracture properties of carbon materials. The stress-strain response of a new ReaxFF parameterization is compared to the previous parameterization and density functional theory results for well-known carbon materials. The new ReaxFF parameterization makes xv substantial improvements to the predicted mechanical response of carbon materials, and is found to be suitable for modeling the mechanical response of carbon materials. Finally, a new material composed of carbon nanotubes within an amorphous carbon (AC) matrix is modeled using the ReaxFF. Various parameters that may be experimentally controlled are investigated such as nanotube bundling, comparing multi-walled nanotube with single-walled nanotubes, and degree of functionalization of the nanotubes. Elastic and fracture properties are investigated for the composite systems and compared to results of pure-nanotube and pure-AC models. It is found that the arrangement of the nanotubes and degree of crosslinking may substantially affect the properties of the systems, particularly in the transverse directions.
Resumo:
The physical and mechanical properties of metal matrix composites were improved by the addition of reinforcements. The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys (6061 and 7015) at high temperatures were studied. Titanium diboride (TiB2) particles were used as the reinforcement. All the composites were produced by hot extrusion. The tensile properties and fracture characteristics of these materials were investigated at room temperature and at high temperatures to determine their ultimate strength and strain to failure. The fracture surface was analysed by scanning electron microscopy. TiB2 particles provide high stability of the aluminium alloys (6061 and 7015) in the fabrication process. An improvement in the mechanical behaviour was achieved by adding TiB2 particles as reinforcement in both the aluminium alloys. Adding TiB2 particles reduces the ductility of the aluminium alloys but does not change the microscopic mode of failure, and the fracture surface exhibits a ductile appearance with dimples formed by coalescence.
Resumo:
Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically Al and Ti alloys) under different LSP irradiation conditions are presented. In particular, the analysis of the residual stress profiles obtained under different irradiation parameters and the evaluation of the corresponding induced surface properties as roughness and wear resistance are presented.
Resumo:
The purpose of this research is to characterise the mechanical properties of multicrystalline silicon for photovoltaic applications that was crystallised from silicon feedstock with a high content of several types of impurities. The mechanical strength, fracture toughness and elastic modulus were measured at different positions within a multicrystalline silicon block to quantify the effect of impurity segregation on these mechanical properties. The microstructure and fracture surfaces of the samples was exhaustively analysed with a scanning electron microscope in order to correlate the values of mechanical properties with material microstructure. Fracture stresses values were treated statistically via the Weibull statistics. The results of this research show that metals segregate to the top of the block, produce moderate microcracking and introduce high thermal stresses. Silicon oxide is produced at the bottom part of the silicon block, and its presence significantly reduces the mechanical strength and fracture toughness of multicrystalline silicon due to both thermal and elastic mismatch between silicon and the silicon oxide inclusions. Silicon carbide inclusions from the upper parts of the block increase the fracture toughness and elastic modulus of multicrystalline silicon. Additionally, the mechanical strength of multicrystalline silicon can increase when the radius of the silicon carbide inclusions is smaller than ~10 µm. The most damaging type of impurity inclusion for the multicrystalline silicon block studied in this work was amorphous silicon oxide. The oriented precipitation of silicon oxide at grain and twin boundaries eases the formation of radial cracks between inclusions and decreases significatively the mechanical strength of multicrystalline silicon. The second most influencing type of impurity inclusions were metals like aluminium and copper, that cause spontaneous microcracking in their surroundings after the crystallisation process, therefore reducing the mechanical response of multicrystalline silicon. Therefore, solar cell producers should pay attention to the content of metals and oxygen within the silicon feedstock in order to produce solar cells with reliable mechanical properties.
Resumo:
"Contract AT-30-1-GEN-366."
Resumo:
Australian Magnesium Corporation, in collaboration with the Cooperative Research Centre for Cast Metals Manufacturing (CAST) and Magnesium Elektron Limited, has developed a magnesium alloy, AM-SC1, which has been specifically designed for engine block applications [1]. This alloy has been used for the engine block of the Genois LE turbo charged diesel injection motor developed by AVL List [2].
Resumo:
Transition metals (Ti, Zr, Hf, Mo, W, V, Nb, Ta, Pd, Pt, Cu, Ag, and Au) are essential building units of many materials and have important industrial applications. Therefore, it is important to understand their thermal and physical behavior when they are subjected to extreme conditions of pressure and temperature. This dissertation presents: • An improved experimental technique to use lasers for the measurement of thermal conductivity of materials under conditions of very high pressure (P, up to 50 GPa) and temperature (T up to 2500 K). • An experimental study of the phase relationship and physical properties of selected transition metals, which revealed new and unexpected physical effects of thermal conductivity in Zr, and Hf under high P-T. • New phase diagrams created for Hf, Ti and Zr from experimental data. • P-T dependence of the lattice parameters in α-hafnium. Contrary to prior reports, the α-ω phase transition in hafnium has a negative dT/dP slope. • New data on thermodynamic and physical properties of several transition metals and their respective high P-T phase diagrams. • First complete thermodynamic database for solid phases of 13 common transition metals was created. This database has: All the thermochemical data on these elements in their standard state (mostly available and compiled); All the equations of state (EoS) formulated from pressure-volume-temperature data (measured as a part of this study and from literature); Complete thermodynamic data for selected elements from standard to extreme conditions. The thermodynamic database provided by this study can be used with available thermodynamic software to calculate all thermophysical properties and phase diagrams at high P-T conditions. For readers who do not have access to this software, tabulated values of all thermodynamic and volume data for the 13 metals at high P-T are included in the APPENDIX. In the APPENDIX, a description of several other high-pressure studies of selected oxide systems is also included. Thermophysical properties (Cp, H, S, G) of the high P-T ω-phase of Ti, Zr and Hf were determined during the optimization of the EoS parameters and are presented in this study for the first time. These results should have important implications in understanding hexagonal-close-packed to simple-hexagonal phase transitions in transition metals and other materials.
Resumo:
Abstract. Currently, thermal energy generation through coal combustion produces ash particles which cause serious environmental problems and which are known as Fly Ash (FA). FA main components are oxides of silicon, aluminum, iron, calcium and magnesium in addition, toxic metals such as arsenic and cobalt. The use of fly ash as a cement replacement material increases long term strength and durability of concrete. In this work, samples were prepared by replacing cement by ground fly ash in 10, 20 and 30% by weight. The characterization of raw materials and microstructure was obtained by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The final results showed that the grinding process significantly improves the mechanical properties of all samples when compared replacing a mortar made with cement by ground fly ash and the reference samples without added fly ash. The beneficial effect of the ground fly ash can increase the use of this product in precast concrete industry