951 resultados para Metal Charge-transfer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new compounds [Ru(R-DAB)(acac)2] (R-DAB = 1,4-diorganyl- 1,4-diazabuta-1,3-diene; R = tert-butyl, 4-methoxyphenyl, 2,6-dimethylphenyl; acac– = 2,4-pentanedionate) exhibit intrachelate ring bond lengths 1.297charge-transfer absorption band in the visible region and by DFT calculations. Oxidation of the compounds occurs mainly at the R-DAB·– radical ligand to produce UV/Vis/NIR and electron paramagnetic resonance (EPR) spectroelectrochemically detectable RuIII species, whereas the reduction proceeds less reversibly and yields predominantly (R-DAB)-ligand-based spin for the 4-methoxyphenyl derivative, measured at low temperature. The results are discussed with respect to metal-to-ligand chargetransfer (MLCT) excited states of conventional (α-diimine)- ruthenium(II) complexes and in view of other (α-diimine)- metal complexes with ambiguous oxidation-state assignments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical reactivity and structure properties of electrogenic bacteria, Geobacter sulfurreducens (Gs) were studied to explore the heterogeneous electron transfer at the bacteria/electrode interface using electrochemical and in-situ spectroscopic techniques. The redox behavior of Gs adsorbed on a gold electrode, which is modified with a ω-functionalized self-assembled monolayer (SAM) of alkanethiols, depends strongly on the terminal group. The latter interacts directly with outermost cytochromes embedded into the outer membrane of the Gs cells. The redox potential of bacterial cells bound electrostatically to a carboxyl-terminated SAM is close to that observed for bacteria attached to a bare gold electrode, revealing a high electronic coupling at the cell/SAM interface. The redox potentials of bacterial cells adsorbed on amino- and pyridyl-terminated SAMs are significantly different suggesting that the outermost cytochromes changes their conformation upon adsorption on these SAMs. No redox activity of Gs was found with CH3-, N(CH3)3+- and OH-terminated SAMs. Complementary in-situ spectroscopic studies on bacteria/SAMs/Au electrode assemblies were carried out to monitor structure changes of the bacterial cells upon polarization. Spectro-electrochemical techniques revealed the electrochemical turnover of the oxidized and reduced states of outer membrane cytochromes (OMCs) in Gs, providing evidence that the OMCs are responsible for the direct electron transfer to metal electrodes, such as gold or silver, during the electricity production. Furthermore, we observed spectroscopic signatures of the native structure of the OMCs and no conformational change during the oxidation/reduction process of the microorganisms. These findings indicate that the carboxyl-anchoring group provides biocompatible conditions for the outermost cytochromes of the Gs, which facilitate the heterogeneous electron transfer at the microorganism/electrode interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In any physicochemical process in liquids, the dynamical response of the solvent to the solutes out of equilibrium plays a crucial role in the rates and products: the solvent molecules react to the changes in volume and electron density of the solutes to minimize the free energy of the solution, thus modulating the activation barriers and stabilizing (or destabilizing) intermediate states. In charge transfer (CT) processes in polar solvents, the response of the solvent always assists the formation of charge separation states by stabilizing the energy of the localized charges. A deep understanding of the solvation mechanisms and time scales is therefore essential for a correct description of any photochemical process in dense phase and for designing molecular devices based on photosensitizers with CT excited states. In the last two decades, with the advent of ultrafast time-resolved spectroscopies, microscopic models describing the relevant case of polar solvation (where both the solvent and the solute molecules have a permanent electric dipole and the mutual interaction is mainly dipole−dipole) have dramatically progressed. Regardless of the details of each model, they all assume that the effect of the electrostatic fields of the solvent molecules on the internal electronic dynamics of the solute are perturbative and that the solvent−solute coupling is mainly an electrostatic interaction between the constant permanent dipoles of the solute and the solvent molecules. This well-established picture has proven to quantitatively rationalize spectroscopic effects of environmental and electric dynamics (time-resolved Stokes shifts, inhomogeneous broadening, etc.). However, recent computational and experimental studies, including ours, have shown that further improvement is required. Indeed, in the last years we investigated several molecular complexes exhibiting photoexcited CT states, and we found that the current description of the formation and stabilization of CT states in an important group of molecules such as transition metal complexes is inaccurate. In particular, we proved that the solvent molecules are not just spectators of intramolecular electron density redistribution but significantly modulate it. Our results solicit further development of quantum mechanics computational methods to treat the solute and (at least) the closest solvent molecules including the nonperturbative treatment of the effects of local electrostatics and direct solvent−solute interactions to describe the dynamical changes of the solute excited states during the solvent response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reversible pressure-induced phase transition in lanthanum nickel ferrate (LaNi0.5Fe0.5O3) manifests itself in the infrared spectrum of the transition metal-oxygen stretching (nu(TM-O)) modes by the emergence of new peaks at pressures greater than similar to 1.4 x 10(9) Pa. Analogies to this transition are made by considering charge transfer in dilanthanum cuprate (La2CuO4) and its modification by partial substitution of copper ions by chromium ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N,N'-Bis(ferrocenylmethylidene)-p-phenylenediamine 1 and N-(ferrocenylmethylidene) aniline 2 are readily synthesized by Schiff base condensation of appropriate units. Iodine (I-2), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), tetrachloro-1,4-benzoquinone (CA), tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) form charge transfer complexes with 1 and 2. IR spectroscopy suggests an increase in the amount of charge transferred from the ferrocenyl ring to the oxidant in the order, I-2 < CA < TCNQ < TCNE approximate to DDQ. EPR spectra of the oxidized binuclear complexes are indicative of localized species containing iron- and carbon-centered radicals. The Mossbauer spectrum of the iodine oxidized complex of 1 reveals the presence of both Fe(III) and Fe(II) centers. Variable temperature magnetic and Mossbauer studies show that the ratio of Fe(III)/Fe(II) centers varies as a function of temperature. The larger Fe(II)/Fe(III) ratio at lower temperatures is best explained by a retro charge transfer from the iodide to the iron(III) metal center. There is negligible solvent effect on the formation of the iodine oxidized charge transfer complex of 1. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorption of a molecule or group with an atom which is less electronegative than oxygen (0) and directly interacting with the surface is very relevant to development of PtM (M = 3d-transition metal) catalysts with high activity. Here, we present theoretical analysis of the adsorption of NH3 molecule (N being less electronegative than 0) on (111) surfaces of PtM (Fe, Co, Ni) alloys using the first principles density functional approach. We find that, while NH3-Pt interaction is stronger than that of NH3 with the elemental M-surfaces, it is weaker than the strength of interaction of NH3 with M-site on the surface of PtM alloy. (C) 2016 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a facile one-pot process to synthesize Ag nanoplates by reducing silver nitrate with 3,3',5,5'-tetramethylbenzidine (TMB) at room temperature. The silver nanoplates were highly oriented single crystals with (111) planes as the basal planes. TMB can be readily oxidized to charge-transfer (CT) complex between TMB, as a donor, and (TMB)(2+), as an acceptor. The pi-pi interaction of the neutral amine (TMB) and diiminium structure (dication, TMB2+) result in the formation of one-dimensional CT complex nanofiber.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By fusing an electron-deficient ring system with the phenyl ring of a 2-phenylpyridine (ppy)-type ligand, a new and synthetically versatile strategy for the phosphorescence color tuning of cyclometalated iridium(III) and platinum(II) metallophosphors has been established. Two robust red electrophosphors with enhanced electron-injection/electron-transporting features were prepared by using an electron-trapping fluoren-9-one chromophore in the ligand design. The thermal, photophysical, redox and electrophosphorescent properties of these complexes are reported. These exciting results can be attributed to a switch of the metal-to-ligand charge-transfer (MLCT) character of the transition from the pyridyl groups in the traditional Ir-III or Pt-II ppy-type complexes to the electron-deficient ring core, and the spectral assignments corroborate well with the electrochemical data as well as the timedependent density functional theory (TD-DFT) calculations. The electron-withdrawing character of the fused ring results in much more stable MLCT states, inducing a substantial red-shift of the triplet emission energy from yellow to red for the Ir-III complex and even green to red for the PtII counterpart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photophysical properties of Ru(II) and Re(I) polypyridyl complexes including a bis-bipyridyl pyrene ligand are presented. The complexes ([(bpy)(2)Ru](2)bpb)(4+) and [(CO)(3)ReCl(bpb)] (bpy = 2,2'-bipyridine, bpb = 1,6-bis-(4-(2,2'-bipyrid-yl)-pyrene) were designed with the intent of examining intramolecular energy migration between MLCT states localized on the metal complexes and pyrene-localized (3)(pi-pi) states. Absorption spectroscopy of both complexes containing the bpb ligand reveals that in addition to the MLCT and the pyrene-centered (1)(pi-pi) transitions, a new absorption band is observed near 400 nm for both complexes. Absorption spectral data for the Re(I) complex strongly suggest the presence of a pyrene(pi) to bpy(pi) intraligand charge transfer (ILCT) transition. Emission spectra at room temperature and at 77 K are almost identical for the Ru(II) and Re(I) complexes containing the bpb ligand. The (3)MLCT emission of related bipyridyl compounds lacking the pyrene is observed at higher energy than for the pyrene-containing complexes, ([(bpy)(2)Ru](2)bpb)(4+) and [(CO(3)ReCl(bpb)]. The Ru(II) complex emits at room temperature with a remarkably long lifetime (130 micros in degassed DMSO). This emission is also strongly sensitive to oxygen and is almost entirely quenched in an aerated solution. In addition, excited-state absorption spectra exhibit features not consistent with (3)MLCT or (3)(pi-pi) states of the parent chromophores. The combined characteristics suggest the emission arises from either (3)(pi-pi) or (3)ILCT states or a state with mixed parentage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the origin of the properties of metal-supported metal thin films is important for the rational design of bimetallic catalysts and other applications, but it is generally difficult to separate effects related to strain from those arising from interface interactions. Here we use density functional (DFT) theory to examine the structure and electronic behavior of few-layer palladium films on the rhenium (0001) surface, where there is negligible interfacial strain and therefore other effects can be isolated. Our DFT calculations predict stacking sequences and interlayer separations in excellent agreement with quantitative low-energy electron diffraction experiments. By theoretically simulating the Pd core-level X-ray photoemission spectra (XPS) of the films, we are able to interpret and assign the basic features of both low-resolution and high-resolution XPS measurements. The core levels at the interface shift to more negative energies, rigidly following the shifts in the same direction of the valence d-band center. We demonstrate that the valence band shift at the interface is caused by charge transfer from Re to Pd, which occurs mainly to valence states of hybridized s-p character rather than to the Pd d-band. Since the d-band filling is roughly constant, there is a correlation between the d-band center shift and its bandwidth. The resulting effect of this charge transfer on the valence d-band is thus analogous to the application of a lateral compressive strain on the adlayers. Our analysis suggests that charge transfer should be considered when describing the origin of core and valence band shifts in other metal / metal adlayer systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the role of strong electronic correlations in quasi-two-dimensional organic charge transfer salts such as (BEDT-TTF)(2)X, (BETS)(2)Y, and beta'-[Pd(dmit)(2)](2)Z. We begin by defining minimal models for these materials. It is necessary to identify two classes of material: the first class is strongly dimerized and is described by a half-filled Hubbard model; the second class is not strongly dimerized and is described by a quarter-filled extended Hubbard model. We argue that these models capture the essential physics of these materials. We explore the phase diagram of the half-filled quasi-two-dimensional organic charge transfer salts, focusing on the metallic and superconducting phases. We review work showing that the metallic phase, which has both Fermi liquid and 'bad metal' regimes, is described both quantitatively and qualitatively by dynamical mean field theory (DMFT). The phenomenology of the superconducting state is still a matter of contention. We critically review the experimental situation, focusing on the key experimental results that may distinguish between rival theories of superconductivity, particularly probes of the pairing symmetry and measurements of the superfluid stiffness. We then discuss some strongly correlated theories of superconductivity, in particular the resonating valence bond (RVB) theory of superconductivity. We conclude by discussing some of the major challenges currently facing the field. These include parameterizing minimal models, the evidence for a pseudogap from nuclear magnetic resonance (NMR) experiments, superconductors with low critical temperatures and extremely small superfluid stiffnesses, the possible spin- liquid states in kappa-(ET)(2)Cu-2(CN)(3) and beta'-[Pd(dmit)(2)](2)Z, and the need for high quality large single crystals.