509 resultados para Mesoporous
Resumo:
In this paper we apply a method recently developed by Do and co-workers(1) for the prediction of adsorption isotherms of pure vapors on carbonaceous materials. The information required for the prediction is the pore size distribution and the BET constant, C, of a corresponding nonporous surface (graphite). The dispersive adsorption force is assumed to be the dominant force in adsorption mechanism. This applies to nonpolar and weakly polar hydrocarbons. We test this predictive model against the adsorption data of benzene, toluene, n-pentane, n-hexane, and ethanol on a commercial activated carbon. It is found that the predictions are excellent for all adsorbates tested with the exception of ethanol where the predicted values are about 10% less than the experimental data, and this is probably attributed to the electrostatic interaction between ethanol molecules and the functional groups on the carbon surfaces.
Resumo:
In this paper, we present a model accounting for the adsorbate-adsorbate interaction in the adsorbed phase in the description of adsorption of pure vapors on carbonaceous materials. The details of the adsorbate-adsorbate interaction of a particular species are obtained from the analysis of its adsorption data on non-porous carbon black. The predictability of the model is tested against the adsorption isotherm data for benzene, toluene, n-pentane, n-hexane, carbon tetrachloride, methanol and ethanol on microporous activated carbon. It was found that the model prediction for non-polar adsorbates are satisfactory while it under-predicts for polar adsorbates, which is attributed to their additional interaction with functional groups. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A thorough investigation was performed on the physical (mechanical, thermal, and hydrothermal stability) and chemical (ion exchange capacity and silanol number) characteristics of aluminosilicate FSMs, synthesized via a new successful short-time synthesis route using leached saponite and a low concentration of CTAB. Moreover, the influence of an additional Al incorporation, utilizing different aluminum sources, on the structure of the FSM derived from saponite is studied. A mesoporous aluminosilicate with a low Si/Al ratio of 12.8 is synthesized, and still has a very large surface area of 1130 m(2)/g and pore volume of 0.92 cm(3)/g. The aluminum-containing samples all have a high cation exchange capacity of around 1 mmol/9 while they still have a silanol number of about 0.9 OH/nm(2); both characteristics being interesting for high-yield postsynthesis modification reactions. Finally, a study is performed on the transformation of the aluminosilicates into their Bronsted acid form via the exchange with ammonium ions and a consecutive heat treatment.
Resumo:
The acidic properties of hexagonal mesoporous aluminosilicates synthesized via a new successful short time synthesis route using leached saponite and a low concentration of surfactant are thoroughly investigated. The resulting aluminosilicate mesoporous materials with high Si/Al ratios of around 11 have a maximal surface area of 1130 m(2)/g, a pore volume of 0.92 cm(3)/g, and a narrow pore size distribution at around 3 nm. The replacement of the sodium ions, present as counterions in the synthesized aluminosilicates, with protons imparts useful catalytic acidity. This acidity is extensively studied with FTIR spectroscopy after adsorption of ammonia and cyclohexylamine, while deuterated acetonitrile differentiates between Bronsted and Lewis acidity. Al-27 NMR spectroscopy determined the coordination of the aluminum in the FSM materials. Simultaneously the effect of an additional Al incorporation, utilizing sodium aluminate, aluminum nitrate, and aluminum isopropoxide is studied. From an acidic point of view, the incorporation with Al(NO3)(3) appears to be the most optimal, as the sample has a very high amount of acid sites (1.3 mmol/g). Investigating the nature of the acid sites it is found that in all samples except the one incorporated with Al(NO3)(3), more Bronsted than Lewis sites are present, both sites being quite acidic as they resist desorption temperatures up to 300 degreesC. Probing the coordination and location of the Al atoms, all the catalysts appeared to have mostly tetrahedral aluminum, up to 95% of the total Al amount for the proton exchanged AI(NO3)(3) incorporated sample.
Resumo:
Nature has developed strategies to present us with a wide variety of colours, from the green of leaves to the bright colours seen in flowers. Anthocyanins are between these natural pigments that are responsible for the great diversity of colours seen in flowers and fruits. Anthocyanins have been used to sensitize titanium dioxide (TiO2) in Dye-Sensitized Solar Cells (DSSCs). DSSCs have become one of the most popular research topic in photovoltaic cells due to their low production costs when compared to other alternatives. DSSCs are inspired in what happens in nature during photosynthesis. A primary charge separation is achieved by means of a photoexcited dye capable of performing the electron injection into the conduction band of a wide band-gap semiconductor, usually TiO2. With this work we aimed to synthesize a novel mesoporous TiO2 structure as the semiconductor in order to increase the dye loading. We used natural occurring dyes such as anthocyanins and their synthetic flavylium relatives, as an alternative to the widely used metal complexes of Ru(II) which are expensive and are environmentally unsafe. This offers not only the chance to use safer dyes for DSSCs, but also to take profit of waste biological products, such as wine and olive oil production residues that are heavily loaded with anthocyanin dyes. We also performed a photodegradation study using TiO2 as the catalyst to degrade dye contaminants, such as those from the wine production waste, by photo-irradiation of the system in the visible region of the light spectrum. We were able to succeed in the synthesis of mesoporous TiO2 both powder and thin film, with a high capacity to load a large amount of dye. We proved the concept of photodegradation using TiO2 as catalyst. And finally, we show that wine production waste is a possible dye source to DSSCs application.
Resumo:
The potential of salicylic acid (SA) encapsulated in porous materials as drug delivery carriers for cancer treatment was studied. Different porous structures, the microporous zeolite NaY, and the mesoporous SBA-15 and MCM-41 were used as hosts for the anti-inflammatory drug. Characterization with different techniques (FTIR, UV/vis, TGA, 1H NMR, and 13C CPMAS NMR) demonstrated the successful loading of SA into the porous hosts. The mesoporous structures showed to be very efficient to encapsulate the SA molecule. The obtained drug delivery systems (DDS) accommodated 0.74 mmol (341 mg/gZEO) in NaY and 1.07 mmol (493 mg/gZEO) to 1.23 mmol (566 mg/gZEO) for SBA-15 and MCM-41, respectively. Interactions between SA molecules and pore structures were identified. A fast and unrestricted liberation of SA at 10 min of the dissolution assay was achieved with 29.3, 46.6, and 50.1 µg/mL of SA from NaY, SBA-15, and MCM-41, respectively, in the in vitro drug release studies (PBS buffer pH 7.4, 37 °C). Kinetic modeling was used to determine the release patterns of the DDS. The porous structures and DDS were evaluated on Hs578T and MDA-MB-468 breast cancer cell lines viability. The porous structures are nontoxic to cancer cells. Cell viability reduction was only observed after the release of SA from MCM- 41 followed by SBA-15 in both breast cancer cell lines.
Resumo:
La síntesis de materiales cristalinos micro y mesoporosos con incorporación de micro/nano partículas/clusters de especies formadas con entidades propias interaccionando con las redes, como óxidos de metales, cationes de neutralización, especies metálicas, etc., pueden potencialmente ser utilizados como "materiales hospedaje" en óptica, electrónica, sensores, como materiales magnéticos, en estrategias ambientales de control de la contaminación, catálisis en general y procesos de separación. Se sintetizaran y caracterizaran por diversas técnicas fisicoquímicas, zeolitas microporosas de poro medio (ZSM) y poro grande (Y), y materiales mesoporosos (MCM-41). La aplicación de los mismos se orientara, por una parte, a procesos catalíticos tecnológicamente innovadores relacionados con los siguientes campos: a)catálisis ambiental: transformación de desechos plásticos (polietileno, polipropileno, poliestireno o mezclas de los mismos) a hidrocarburos de mayor valor agregado (gasolinas, gasoil, gases licuados de petróleo, hidrocarburos aromáticos); b)química fina: oxidación parcial de hidrocarburos aromáticos hacia la obtención de commodities, fármacos, etc. Por otra parte, se evaluaran las propiedades magnéticas (ferromagnetismo, paramagnetismo, superparamagnetismo, diamagnetismo) que algunos de estos materiales presentan, en busca de su correlación con sus propiedades catalíticas, cuando sea factible. Se estudiaran las condiciones óptimas de síntesis de los materiales, aplicando técnicas hidrotermicas o sol gel, controlando variables como temperaturas y tiempos de síntesis, pH de geles iniciales-intermedios-finales, tipo de fuentes precursoras, etc. La modificación de las matrices con Co, Cr, Mn, H, o Zn, se realizara mediante diversos tratamientos químicos (intercambio, impregnación) a partir de las sales correspondientes, con el objeto de incorporar elementos activos al estado iónico, metálico, clusters, etc.; y la influencia de distintos tratamientos térmicos (oxidantes, inertes o reductores; atmósferas dinámicas o estáticas; temperaturas). La caracterización estructural de los materiales será por: AA (cuantificación elemental de bulk); XRD (determinacion de presencia de especies oxidos o metalicas de Zn, Co, Cr, o Mn; determinacion de cristalinidad y estructura); BET (determinacion de area superficial); DSC-TG-DTA (determinacion de estabilidad de las matrices sintetizadas); FTIR de piridina (determinacion de tipo-fuerza-cantidad de sitios activos); Raman y UV-reflectancia difusa (determinacion de especies ionicas interacturando o depositadas sobre las matrices); TPR (identificacion de especies reducibles); SEM-EDAX (determinacion de tamaño de particulas de especies activas y de las matrices y cuanfiticacion superficial); Magnetómetros SQUID y de muestra vibrante (medición de magnetización y susceptibilidad magnética a temperatura ambiente con variación de campo externo aplicado, y variación de temperaturas (4 a 300 K) con campo externo fijo). En síntesis, se plantean tres grandes áreas de trabajo: No1)Síntesis y caracterización de materiales micro y mesoporosos nanoestructurados; No2) Evaluación de las propiedades catalíticas; No3) Evaluación de las propiedades magnéticas. Estos lineamientos nos permitirán generar nuevos conocimientos científicos-tecnológicos, formando recursos humanos (dos becarios posdoctorales; un becario doctoral; tres becarios alumnos de investigación; aproximadamente 15 pasantes de grado al año) aptos para emprender tales desafíos. Los conocimientos originados son constantemente trabajados en las actividades docentes de grado y posgrado que los integrantes del proyecto poseen. Finalmente serán transmitidos y puestos a consideración de pares evaluadores en presentaciones a congresos nacionales e internacionales y revistas especializadas.
Resumo:
A new electrochemical method to synthesize mesoporous nanowires of alloys has been developed. Electrochemical deposition in ionic liquid-in-water (IL/W) microemulsion has been successful to grow mesoporous CoPt nanowires in the interior of polycarbonate membranes. The viscosity of the medium was high, but it did not avoid the entrance of the microemulsion in the interior of the membrane"s channels. The structure of the IL/W microemulsions, with droplets of ionic liquid (4 nm average diameter) dispersed in CoPt aqueous solution, defined the structure of the nanowires, with pores of a few nanometers, because CoPt alloy deposited only from the aqueous component of the microemulsion. The electrodeposition in IL/W microemulsion allows obtaining mesoporous structures in which the small pores must correspond to the size of the droplets of the electrolytic aqueous component of the microemulsion. The IL main phase is like a template for the confined electrodeposition. The comparison of the electrocatalytic behaviours towards methanol oxidation of mesoporous and compact CoPt nanowires of the same composition, demonstrated the porosity of the material. For the same material mass, the CoPt mesoporous nanowires present a surface area 16 times greater than compact ones, and comparable to that observed for commercial carbon-supported platinum nanoparticles.
Resumo:
A new electrochemical method to synthesize mesoporous nanowires of alloys has been developed. Electrochemical deposition in ionic liquid-in-water (IL/W) microemulsion has been successful to grow mesoporous CoPt nanowires in the interior of polycarbonate membranes. The viscosity of the medium was high, but it did not avoid the entrance of the microemulsion in the interior of the membrane"s channels. The structure of the IL/W microemulsions, with droplets of ionic liquid (4 nm average diameter) dispersed in CoPt aqueous solution, defined the structure of the nanowires, with pores of a few nanometers, because CoPt alloy deposited only from the aqueous component of the microemulsion. The electrodeposition in IL/W microemulsion allows obtaining mesoporous structures in which the small pores must correspond to the size of the droplets of the electrolytic aqueous component of the microemulsion. The IL main phase is like a template for the confined electrodeposition. The comparison of the electrocatalytic behaviours towards methanol oxidation of mesoporous and compact CoPt nanowires of the same composition, demonstrated the porosity of the material. For the same material mass, the CoPt mesoporous nanowires present a surface area 16 times greater than compact ones, and comparable to that observed for commercial carbon-supported platinum nanoparticles.
Resumo:
Porous silicon (PSi) is a promising material to be utilized in drug delivery formulations. The release rate of the drug compound can be controlled by changing the pore properties and surface chemistry of PSi. The loading of a poorly soluble drug into mesoporous silicon particles enhances its dissolution in the body. The drug loading is based on adsorption. The attainable maximum loaded amount depends on the properties of the drug compound and the PSi material, and on the process conditions. The loading solvent also essentially affects the adsorption process. The loading of indomethacin into PSi particles with varying surface modification was studied. Solvent mixtures were applied in the loading, and the loaded samples were analyzed with thermal analysis methods. The best degree of loading was obtained using a mixture of dichloromethane and methanol. The drug loads varied from 7.7 w-% to 26.8 w-%. A disturbing factor in the loading experiments was the tendency of indomethacin to form solvates with the solvents applied. In addition, the physical form and stability of indomethacin loaded in PSi and silica particles were studied using Raman spectroscopy. In the case of silica, the presence of crystalline drug as well as the polymorph form can be detected, but the method proved to be not applicable for PSi particles.
Resumo:
A simple and effective route has been developed for the synthesis of bimodal (3.6 and 9.4 nm) mesoporous silica materials that have two ordered interconnected pore networks. Mesostructures have been prepared through the self assembly mechanism by using a mixture of polyoxyethylene fluoroalkyl ether and triblock copolymer as building block. The investigation of the RF8(EO)9/P123/water phase diagram evidences that in the considered surfactant range of concentrations, the system is micellar (L1). DLS measurements indicate that this micellar phase is composed of two types of micelles, the size of the first one at around 7.6 nm corresponds unambiguously to the pure fluorinated micelles. The second type of micelles at higher diameter consists of fluorinated micelles which have accommodated a weak fraction of P123 molecules. Thus, in this study the bimodal mesoporous silica are really templated by two kinds of micelles.
Resumo:
Herein, we report the formation of organized mesoporous silica materials prepared from a novel nonionic gemini surfactant, myristoyl-end capped Jeffamine, synthesized from a polyoxyalkyleneamine (ED900). The behavior of the modified Jeffamine in water was first investigated. A direct micellar phase (L1) and a hexagonal (H1) liquid crystal were found. The structure of the micelles was investigated from the SAXS and the analysis by Generalized Indirect Fourier Transformation (GIFT), which show that the particles are globular of coreshell type. The myristoyl chains, located at the ends of the amphiphile molecule are assembled to form the core of the micelles and, as a consequence, the molecules are folded over on themselves. Mesoporous materials were then synthesized from the self-assembly mechanism. The recovered materials were characterized by SAXS measurements, nitrogen adsorptiondesorption analysis, transmission and scanning electron microscopy. The results clearly evidence that by modifying the synthesis parameters, such as the surfactant/silica precursor molar ratio and the hydrothermal conditions, one can control the size and the nanostructuring of the resulting material. It was observed that, the lower the temperature of the hydrothermal treatment, the better the mesopore ordering.
Resumo:
The influence of the chemical composition and silylation of mesoporous MCM-41 materials on the photochromic behaviour of adsorbed spiropyran (BIPS) and 6-nitrospiropyran was studied. Upon incorporation, the spiropyrans underwent ring opening to form either zwitterionic merocyanine or its corresponding O-protonated form. In all silica MCM-41 or in the MCM-41 containing aluminium, the O-protonated merocyanine was predominantly formed. In the case of MCM-41 modified by silylation of the OH groups, a mixture of zwitterionic merocyanine and spiropyran was present. The photochromic response was studied by means of steady-state irradiation and by laser flash photolysis. Steady-state irradiation (λ > 450 nm) of the solid samples gives rise in all cases to an intensity decrease of the absorption bands corresponding to either the protonated or the unprotonated merocyanine form (reverse photochromism). In contrast, laser flash photolysis at 308 nm of spiropyrans supported on silylated MCM-41 allows observation of the photochemical ring opening of residual spiropyran to the corresponding zwitterionic form (normal photochromism).
Resumo:
The thesis covers a systematic investigation on the synthesis of silica aerogels and microspheres with tailored porosity, at ambient conditions by varying the experimental parameters as well as using organic templates. Organically modified silica-gelatin and silica-chitosan hybrids were developed for the first time using alkylalkoxysilanes such as MTMS and VTMS. Application of novel silica-biopolymer antiwetting coatings on different substrates such as glass, leather and textile is also demonstrated in the thesis.