28 resultados para Menadione


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endodontic infections are mixed aerobic-anaerobic infections and several microbial groups associated to these pathologies are also involved in orofacial infections. The goal of this study was to evaluate the susceptibility of microorganisms isolated from endodontic infections to β-lactams and metronidazole and verify the production of β-lactamases. Clinical specimens were collected from 58 endodontic infections of 52 patients. The microorganisms were isolated in selective and non-selective culture media, under anaerobiosis and aerobiosis, and identified using biochemical methods. In the susceptibility tests, it was used an agar dilution method, and Wilkins-Chalgren agar enriched with blood, hemin and menadione for the anaerobes, while Mueller-Hinton agar was employed for the facultative anaerobes. The production of β-lactamases was evaluated through the biological and chromogenic cephalosporin methods. All tested isolates were sensitive to imipenem and 99.3% to amoxicillin/clavulanate association, while 16.1% showed resistance to amoxicillin and penicillin G, and 4.89% to cefoxitin. Resistance to metronidazole was just found in facultative anaerobes. Production of β-lactamases was detected in 18.2% of the isolates and presented a correlation with resistance to β-lactams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Odontologia - FOA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biotecnologia - IQ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, it is clear that the target of creating a sustainable future for the next generations requires to re-think the industrial application of chemistry. It is also evident that more sustainable chemical processes may be economically convenient, in comparison with the conventional ones, because fewer by-products means lower costs for raw materials, for separation and for disposal treatments; but also it implies an increase of productivity and, as a consequence, smaller reactors can be used. In addition, an indirect gain could derive from the better public image of the company, marketing sustainable products or processes. In this context, oxidation reactions play a major role, being the tool for the production of huge quantities of chemical intermediates and specialties. Potentially, the impact of these productions on the environment could have been much worse than it is, if a continuous efforts hadn’t been spent to improve the technologies employed. Substantial technological innovations have driven the development of new catalytic systems, the improvement of reactions and process technologies, contributing to move the chemical industry in the direction of a more sustainable and ecological approach. The roadmap for the application of these concepts includes new synthetic strategies, alternative reactants, catalysts heterogenisation and innovative reactor configurations and process design. Actually, in order to implement all these ideas into real projects, the development of more efficient reactions is one primary target. Yield, selectivity and space-time yield are the right metrics for evaluating the reaction efficiency. In the case of catalytic selective oxidation, the control of selectivity has always been the principal issue, because the formation of total oxidation products (carbon oxides) is thermodynamically more favoured than the formation of the desired, partially oxidized compound. As a matter of fact, only in few oxidation reactions a total, or close to total, conversion is achieved, and usually the selectivity is limited by the formation of by-products or co-products, that often implies unfavourable process economics; moreover, sometimes the cost of the oxidant further penalizes the process. During my PhD work, I have investigated four reactions that are emblematic of the new approaches used in the chemical industry. In the Part A of my thesis, a new process aimed at a more sustainable production of menadione (vitamin K3) is described. The “greener” approach includes the use of hydrogen peroxide in place of chromate (from a stoichiometric oxidation to a catalytic oxidation), also avoiding the production of dangerous waste. Moreover, I have studied the possibility of using an heterogeneous catalytic system, able to efficiently activate hydrogen peroxide. Indeed, the overall process would be carried out in two different steps: the first is the methylation of 1-naphthol with methanol to yield 2-methyl-1-naphthol, the second one is the oxidation of the latter compound to menadione. The catalyst for this latter step, the reaction object of my investigation, consists of Nb2O5-SiO2 prepared with the sol-gel technique. The catalytic tests were first carried out under conditions that simulate the in-situ generation of hydrogen peroxide, that means using a low concentration of the oxidant. Then, experiments were carried out using higher hydrogen peroxide concentration. The study of the reaction mechanism was fundamental to get indications about the best operative conditions, and improve the selectivity to menadione. In the Part B, I explored the direct oxidation of benzene to phenol with hydrogen peroxide. The industrial process for phenol is the oxidation of cumene with oxygen, that also co-produces acetone. This can be considered a case of how economics could drive the sustainability issue; in fact, the new process allowing to obtain directly phenol, besides avoiding the co-production of acetone (a burden for phenol, because the market requirements for the two products are quite different), might be economically convenient with respect to the conventional process, if a high selectivity to phenol were obtained. Titanium silicalite-1 (TS-1) is the catalyst chosen for this reaction. Comparing the reactivity results obtained with some TS-1 samples having different chemical-physical properties, and analyzing in detail the effect of the more important reaction parameters, we could formulate some hypothesis concerning the reaction network and mechanism. Part C of my thesis deals with the hydroxylation of phenol to hydroquinone and catechol. This reaction is already industrially applied but, for economical reason, an improvement of the selectivity to the para di-hydroxilated compound and a decrease of the selectivity to the ortho isomer would be desirable. Also in this case, the catalyst used was the TS-1. The aim of my research was to find out a method to control the selectivity ratio between the two isomers, and finally to make the industrial process more flexible, in order to adapt the process performance in function of fluctuations of the market requirements. The reaction was carried out in both a batch stirred reactor and in a re-circulating fixed-bed reactor. In the first system, the effect of various reaction parameters on catalytic behaviour was investigated: type of solvent or co-solvent, and particle size. With the second reactor type, I investigated the possibility to use a continuous system, and the catalyst shaped in extrudates (instead of powder), in order to avoid the catalyst filtration step. Finally, part D deals with the study of a new process for the valorisation of glycerol, by means of transformation into valuable chemicals. This molecule is nowadays produced in big amount, being a co-product in biodiesel synthesis; therefore, it is considered a raw material from renewable resources (a bio-platform molecule). Initially, we tested the oxidation of glycerol in the liquid-phase, with hydrogen peroxide and TS-1. However, results achieved were not satisfactory. Then we investigated the gas-phase transformation of glycerol into acrylic acid, with the intermediate formation of acrolein; the latter can be obtained by dehydration of glycerol, and then can be oxidized into acrylic acid. Actually, the oxidation step from acrolein to acrylic acid is already optimized at an industrial level; therefore, we decided to investigate in depth the first step of the process. I studied the reactivity of heterogeneous acid catalysts based on sulphated zirconia. Tests were carried out both in aerobic and anaerobic conditions, in order to investigate the effect of oxygen on the catalyst deactivation rate (one main problem usually met in glycerol dehydration). Finally, I studied the reactivity of bifunctional systems, made of Keggin-type polyoxometalates, either alone or supported over sulphated zirconia, in this way combining the acid functionality (necessary for the dehydrative step) with the redox one (necessary for the oxidative step). In conclusion, during my PhD work I investigated reactions that apply the “green chemistry” rules and strategies; in particular, I studied new greener approaches for the synthesis of chemicals (Part A and Part B), the optimisation of reaction parameters to make the oxidation process more flexible (Part C), and the use of a bioplatform molecule for the synthesis of a chemical intermediate (Part D).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DOMON domain is a domain widespread in nature, predicted to fold in a β-sandwich structure. In plants, AIR12 is constituted by a single DOMON domain located in the apoplastic space and is GPI-modified for anchoring to the plasma membrane. Arabidopsis thaliana AIR12 has been heterologously expressed as a recombinant protein (recAtAIR12) in Pichia pastoris. Spectrophotometrical analysis of the purified protein showed that recAtAir12 is a cytochrome b. RecAtAIR12 is highly glycosylated, it is reduced by ascorbate, superoxide and naftoquinones, oxidised by monodehydroascorbate and oxygen and insensitive to hydrogen peroxide. The addition of recAtAIR12 to permeabilized plasma membranes containing NADH, FeEDTA and menadione, caused a statistically significant increase in hydroxyl radicals as detected by electron paramagnetic resonance. In these conditions, recAtAIR12 has thus a pro-oxidant role. Interestingly, AIR12 is related to the cytochrome domain of cellobiose dehydrogenase which is involved in lignin degradation, possibly via reactive oxygen species (ROS) production. In Arabidopsis the Air12 promoter is specifically activated at sites where cell separations occur and ROS, including •OH, are involved in cell wall modifications. air12 knock-out plants infected with Botrytis cinerea are more resistant than wild-type and air12 complemented plants. Also during B. cinerea infection, cell wall modifications and ROS are involved. Our results thus suggest that AIR12 could be involved in cell wall modifying reactions by interacting with ROS and ascorbate. CyDOMs are plasma membrane redox proteins of plants that are predicted to contain an apoplastic DOMON fused with a transmembrane cytochrome b561 domain. CyDOMs have never been purified nor characterised. The trans-membrane portion of a soybean CyDOM was expressed in E. coli but purification could not be achieved. The DOMON domain was expressed in P. pastoris and shown to be itself a cytochrome b that could be reduced by ascorbate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thiazolide nitazoxanide (NTZ) and some derivatives exhibit considerable in vitro activities against a broad range of parasites, including the apicomplexans Neospora caninum and Toxoplasma gondii tachyzoites. In order to identify potential molecular targets for this compound in both parasites, RM4847 was coupled to epoxy-agarose and affinity chromatography was performed. A protein of approximately 35 kDa was eluted upon RM4847-affinity-chromatography from extracts of N. caninum-infected human foreskin fibroblasts (HFF) and non-infected HFF, but no protein was eluted when affinity chromatography was performed with T. gondii or N. caninum tachyzoite extracts. Mass spectrometry analysis identified the 35 kDa protein as human quinone reductase NQO1 (P15559; QR). Within 8h after infection of HFF with N. caninum tachyzoites, QR transcript expression levels were notably increased, but no such increase was observed upon infection with T. gondii tachyzoites. Treatment of non-infected HFF with RM4847 did also lead to an increase of QR transcript levels. The enzymatic activity of 6-histidine-tagged recombinant QR (recQR) was assayed using menadione as a substrate. The thiazolides NTZ, tizoxanide and RM4847 inhibited recQR activity on menadione in a concentration-dependent manner. Moreover, a small residual reducing activity was observed when these thiazolides were offered as substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sequences of rat testis carbonyl reductase (rCR1) and rat ovary carbonyl reductase (rCR2) are 98% identical, differing only at amino acids 140, 141, 143, 235 and 238. Despite such strong sequence identity, we find that rCR1 and rCR2 have different catalytic constants for metabolism of menadione and 4-benzoyl-pyridine. Compared to rCR1, rCR2 has a 20-fold lower K(m) and 5-fold lower k(cat) towards menadione and a 7-fold lower K(m) and 7-fold lower k(cat) towards 4-benzoyl-pyridine. We constructed hybrids of rCR1 and rCR2 that were changed at either residues 140, 141 and 143 or residues 235 and 238. rCR1 with residues 140, 141 and 143 of rCR2 has similar catalytic efficiency for menadione and 4-benzoyl-pyridine as rCR1. rCR1 with Thr-235 and Glu-238 of rCR2 has the catalytic constants of rCR2, indicating that it is this part of rCR2 that contributes to its lower K(m) for menadione and 4-benzoyl-pyridine. Comparisons of three-dimensional models of rCR1 and rCR2 show how Thr-235 and Glu-238 stabilize rCR2 binding of NADPH and menadione.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Giardia lamblia is a protozoan parasite that causes giardiasis, a diarrhoeal disease affecting humans and various animal species. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for treatment of giardiasis. Nitroreductases such as GlNR1 and GlNR2 may play a role in activation or inactivation of these drugs. The aim of this work is to characterise these two enzymes using functional assays. For respective analyses recombinant analogues from GlNR1 and GlNR2 were produced in Escherichia coli. E. coli expressing GlNR1 and GlNR2 alone or together were grown in the presence of nitro compounds. Furthermore, pull-down assays were performed using HA-tagged GlNR1 and GlNR2 as baits. As expected, E. coli expressing GlNR1 were more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions whereas E. coli expressing GlNR2 were susceptible to neither drug. Interestingly, expression of both nitroreductases gave the same results as expression of GlNR2 alone. In functional assays, both nitroreductases had their strongest activities on the quinone menadione (vitamin K3) and FAD, but reduction of nitro compounds including the nitro drugs metronidazole and nitazoxanidewas clearly detected. Full reduction of 7-nitrocoumarin to 7-aminocoumarin was preferentially achieved with GlNR2. Pull-down assays revealed that GlNR1 and GlNR2 interacted in vivo forming a multienzyme complex. These findings suggest that both nitroreductases are multifunctional. Their main biological role may reside in the reduction of vitamin K analogues and FAD. Activation by GlNR1 or inactivation by GlNR2 of nitro drugs may be the consequence of a secondary enzymatic activity either yielding (GlNR1) or eliminating (GlNR2) toxic intermediates after reduction of these compounds. © 2015 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY-NC-ND license

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The γ-aminobutyric acid benzodiazepine (GABAA /BZDR) ionophore complex has been widely studied in the central nervous system (CNS) and it regulates Cl− ion movement across the plasma membrane. The complex has been found in the distal tubule and the thick ascending limb of the kidney. The goal of this study was to see if modulation of this complex by agonists or antagonists could affect the way Madin-Darby Canine Kidney (MDCK) cells responded to an oxidant stress induced by menadione. When compared to cells incubated with menadione alone, preincubation with lindane, a nonspecific GABAA antagonist, coincubation with bicuculline, a specific GABAA antagonist, and coincubation with FG7142, an inverse agonist for the BZDR, protected cells from menadione cytotoxicity. Preincubation of cells in media containing PK11195 had no effect on menadione cytotoxicity. Coincubation with flurazepam, a BZDR agonist, exacerbated menadione cytotoxicity. This suggests that modulation of the GABAA/BZDR ionophore complex within MDCK cells with agonists and antagonists can alter the cellular responsiveness to an oxidant-induced injury. These responses via agonists and antagonists may be due to alterations of Cl− ion influx during late stage necrotic cell death. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NADPH cytochrome P-450 reductase releases FMN and FAD upon dilution into slightly acidic potassium bromide. The flavins are released with positive cooperativity. Dithiothreitol protects the FAD dependent cytochrome c reductase activity against inactivation by free radicals. Behavior in potassium bromide is sensitive to changes in the pH. High performance hydroxylapatite resolved the FAD dependent reductase from holoreductase. For 96% FAD dependent reductase, the overall yield was 12%.^ High FAD dependence was matched by a low FAD content, with FAD/FMN as low as 0.015. There were three molecules of FMN for every four molecules of reductase. The aporeductase had negligible activity towards cytochrome c, ferricyanide, menadione, dichlorophenolindophenol, nitro blue tetrazolium, oxygen and acetyl pyridine adenine dinucleotide phosphate. A four minute incubation in FAD reconstituted one half to all of the specific activity, per milligram protein, of untreated reductase, depending upon the substrate. After a two hour reconstitution, the reductase eluted from hydroxylapatite at the location of holoreductase. It had little flavin dependence, was equimolar in FMN and FAD, and had nearly the specific activity (per mole flavin) of untreated reductase.^ The lack of activity and the ability of FMN to also reconstitute suggest that the redox center of FAD is essential for catalysis, rather than for structure. Dependence upon FAD is consistent with existing hypotheses for the catalytic cycle of the reductase. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fission yeast Sty1 mitogen-activated protein (MAP) kinase (MAPK) and its activator the Wis1 MAP kinase kinase (MAPKK) are required for cell cycle control, initiation of sexual differentiation, and protection against cellular stress. Like the mammalian JNK/SAPK and p38/CSBP1 MAPKs, Sty1 is activated by a range of environmental insults including osmotic stress, hydrogen peroxide, UV light, menadione, heat shock, and the protein synthesis inhibitor anisomycin. We have recently identified two upstream regulators of the Wis1 MAPKK, namely the Wak1 MAPKKK and the Mcs4 response regulator. Cells lacking Mcs4 or Wak1, however, are able to proliferate under stressful conditions and undergo sexual differentiation, suggesting that additional pathway(s) control the Wis1 MAPKK. We now show that this additional signal information is provided, at least in part, by the Win1 mitotic regulator. We show that Wak1 and Win1 coordinately control activation of Sty1 in response to multiple environmental stresses, but that Wak1 and Win1 perform distinct roles in the control of Sty1 under poor nutritional conditions. Our results suggest that the stress-activated Sty1 MAPK integrates information from multiple signaling pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One gene locus on chromosome I in Saccharomyces cerevisiae encodes a protein (YAB5_YEAST; accession no. P31378) with local sequence similarity to the DNA repair glycosylase endonuclease III from Escherichia coli. We have analyzed the function of this gene, now assigned NTG1 (endonuclease three-like glycosylase 1), by cloning, mutant analysis, and gene expression in E. coli. Targeted gene disruption of NTG1 produces a mutant that is sensitive to H2O2 and menadione, indicating that NTG1 is required for repair of oxidative DNA damage in vivo. Northern blot analysis and expression studies of a NTG1-lacZ gene fusion showed that NTG1 is induced by cell exposure to different DNA damaging agents, particularly menadione, and hence belongs to the DNA damage-inducible regulon in S. cerevisiae. When expressed in E. coli, the NTG1 gene product cleaves plasmid DNA damaged by osmium tetroxide, thus, indicating specificity for thymine glycols in DNA similarly as is the case for EndoIII. However, NTG1 also releases formamidopyrimidines from DNA with high efficiency and, hence, represents a glycosylase with a novel range of substrate recognition. Sequences similar to NTG1 from other eukaryotes, including Caenorhabditis elegans, Schizosaccharomyces pombe, and mammals, have recently been entered in the GenBank suggesting the universal presence of NTG1-like genes in higher organisms. S. cerevisiae NTG1 does not have the [4Fe-4S] cluster DNA binding domain characteristic of the other members of this family.