970 resultados para Memory consolidation
Resumo:
A large proportion of human populations suffer memory impairments either caused by normal aging or afflicted by diverse neurological and neurodegenerative diseases. Memory enhancers and other drugs tested so far against memory loss have failed to produce therapeutic efficacy in clinical trials and thus, there is a need to find remedy for this mental disorder. In search for cure of memory loss, our laboratory discovered a robust memory enhancer called RGS14(414). A treatment in brain with its gene produces an enduring effect on memory that lasts for lifetime of rats. Therefore, current thesis work was designed to investigate whether RGS14(414) treatment can prevent memory loss and furthermore, explore through biological processes responsible for RGS-mediated memory enhancement. We found that RGS14(414) gene treatment prevented episodic memory loss in rodent models of normal aging and Alzheimer´s disease. A memory loss was observed in normal rats at 18 months of age; however, when they were treated with RGS14(414) gene at 3 months of age, they abrogated this deficit and their memory remained intact till the age of 22 months. In addition to normal aging rats, effect of memory enhancer treatment in mice model of Alzheimer´s disease (AD-mice) produced a similar effect. AD-mice subjected to treatment with RGS14(414) gene at the age of 2 months, a period when memory was intact, showed not only a prevention in memory loss observed at 4 months of age but also they were able to maintain normal memory after 6 months of the treatment. We posit that long-lasting effect on memory enhancement and prevention of memory loss mediated through RGS14(414) might be due to a permanent structural change caused by a surge in neuronal connections and enhanced neuronal remodeling, key processes for long-term memory formation. A neuronal arborization analysis of both pyramidal and non-pyramidal neurons in brain of RGS14(414)-treated rats exhibited robust rise in neurites outgrowth of both kind of cells, and an increment in number of branching from the apical dendrite of pyramidal neurons, reaching to almost three times of the control animals. To further understand of underlying mechanism by which RGS14(414) induces neuronal arborization, we investigated into neurotrophic factors. We observed that RGS14 treatment induces a selective increase in BDNF. Role of BDNF in neuronal arborization, as well as its implication in learning and memory processes is well described. In addition, our results showing a dynamic expression pattern of BDNF during ORM processing that overlapped with memory consolidation further support the idea of the implication of this neurotrophin in formation of long-term memory in RGS-animals. On the other hand, in studies of expression profiling of RGS-treated animals, we have demonstrated that 14-3-3ζ protein displays a coherent relationship to RGS-mediated ORM enhancement. Recent studies have demonstrated that the interaction of receptor for activated protein kinase 1 (RACK1) with 14-3-3ζ is essential for its nuclear translocation, where RACK1-14-3-3ζ complex binds at promotor IV region of BDNF and promotes an increase in BDNF gene transcription. These observations suggest that 14-3-3ζ might regulate the elevated level of BDNF seen in RGS14(414) gene treated animals. Therefore, it seems that RGS-mediated surge in 14-3-3ζ causes elevated BDNF synthesis needed for neuronal arborization and enhanced ORM. The prevention of memory loss might be mediated through a restoration in BDNF and 14-3-3ζ protein levels, which are significantly decreased in aging and Alzheimer’s disease. Additionally, our results demonstrate that RGS14(414) treatment could be a viable strategy against episodic memory loss.
Resumo:
Ribot’s law refers to the better preservation of remote memories compared with recent ones that presumably characterizes retrograde amnesia. Even if Ribot-type temporal gradient has been extensively studied in retrograde amnesia, particularly in Alzheimer’s disease (AD), this pattern has not been consistently found. One explanation for these results may be that rehearsal frequency rather than remoteness accounts for the better preservation of these memories. Thus, the aim of present study was to address this question by studying retrograde semantic memory in subjects with amnestic mild cognitive impairment (aMCI) (n = 20), mild AD (n = 20) and in healthy older controls (HC; n = 19). In order to evaluate the impact of repetition as well as the impact of remoteness, we used a test assessing memory for enduring and transient public events that occurred in the recent and remote past. Results show no clear temporal gradient across time periods (1960–1975; 1976–1990; 1991–2005; 2006–2011), but a better performance was observed in all three groups for enduring compared with transient events. Moreover, although deficits were globally found in both patients groups compared with HC, more specific analyses revealed that aMCI patients were only impaired on transient events while AD patients were impaired on both transient and enduring events. Exploratory analyses also revealed a tendency suggesting preservation of remote transient events in aMCI. These findings are discussed with regards to memory consolidation models.
Resumo:
Pavlovian fear conditioning is an evolutionary conserved and extensively studied form of associative learning and memory. In mammals, the lateral amygdala (LA) is an essential locus for Pavlovian fear learning and memory. Despite significant progress unraveling the cellular mechanisms responsible for fear conditioning, very little is known about the anatomical organization of neurons encoding fear conditioning in the LA. One key question is how fear conditioning to different sensory stimuli is organized in LA neuronal ensembles. Here we show that Pavlovian fear conditioning, formed through either the auditory or visual sensory modality, activates a similar density of LA neurons expressing a learning-induced phosphorylated extracellular signal-regulated kinase (p-ERK1/2). While the size of the neuron population specific to either memory was similar, the anatomical distribution differed. Several discrete sites in the LA contained a small but significant number of p-ERK1/2-expressing neurons specific to either sensory modality. The sites were anatomically localized to different levels of the longitudinal plane and were independent of both memory strength and the relative size of the activated neuronal population, suggesting some portion of the memory trace for auditory and visually cued fear conditioning is allocated differently in the LA. Presenting the visual stimulus by itself did not activate the same p-ERK1/2 neuron density or pattern, confirming the novelty of light alone cannot account for the specific pattern of activated neurons after visual fear conditioning. Together, these findings reveal an anatomical distribution of visual and auditory fear conditioning at the level of neuronal ensembles in the LA.
Resumo:
The subiculum is a structure that forms a bridge between the hippocampus and the entorhinal cortex (EC), and plays a major role in the memory consolidation process. Here, we demonstrate spike-timing-dependent plasticity (STDP) at the proximal excitatory inputs on the subicular pyramidal neurons of juvenile rat. Causal (positive) pairing of a single EPSP with a single back-propagating action potential (bAP) after a time interval of 10 ms (+10 ms) failed to induce plasticity. However, increasing the number of bAPs in a burst to three, at two different frequencies of 50 Hz (bAP burst) and 150 Hz, induced long-term depression (LTD) after a time interval of +10 ms in both the regular-firing (RF), and the weak burst firing (WBF) neurons. The LTD amplitude decreased with increasing time interval between the EPSP and the bAP burst. Reversing the order of the pairing of the EPSP and the bAP burst induced LTP at a time interval of -10 ms. This finding is in contrast with reports at other synapses, wherein prebefore postsynaptic (causal) pairing induced LTP and vice versa. Our results reaffirm the earlier observations that the relative timing of the pre- and postsynaptic activities can lead to multiple types of plasticity profiles. The induction of timing-dependent LTD (t-LTD) was dependent on postsynaptic calcium change via NMDA receptors in the WBF neurons, while it was independent of postsynaptic calcium change, but required active L-type calcium channels in the RF neurons. Thus the mechanism of synaptic plasticity may vary within a hippocampal subfield depending on the postsynaptic neuron involved. This study also reports a novel mechanism of LTD induction, where L-type calcium channels are involved in a presynaptically induced synaptic plasticity. The findings may have strong implications in the memory consolidation process owing to the central role of the subiculum and LTD in this process.
Resumo:
Vários trabalhos têm demonstrado uma relação entre sono e memória. Desta forma, tem sido descrito um papel importante do sono na consolidação da memória e um efeito negativo pela privação do mesmo. O hipocampo é uma região importante para a formação e consolidação da memória espacial, e contém uma alta expressão de receptores para corticosteróides. As ações dos corticosteróides no hipocampo são fundamentais para a aquisição de memória e dependem de um balanço adequado entre receptores de Glicocorticóides (RGc) e Mineralocorticóides (RMn). Assim é descrito na literatura que um aumento na expressão de RMn é promotor de aquisição de memória, enquanto que um aumento na expressão de RGc produz um efeito negativo. Apesar dos níveis circulantes de glicocorticóides na privação de sono paradoxal (PSP), não serem responsáveis pelo enfraquecimento de memória, não existem dados sobre a expressão dos receptores para corticosteróides no hipocampo, após PSP. Neste trabalho tivemos como objetivo investigar a expressão de receptores de Glicocorticóides no hipocampo, bem como avaliar aprendizado e memória em ratos privados de sono paradoxal. Ratos Wistar machos (250- 350g) foram submetidos à PSP, utilizando-se o método de múltiplas plataformas por um período de 96 horas. Após 96h de privação os animais foram anestesiados e perfundidos. Secções de 25 μm na área do hipocampo foram obtidas e reagidas com anticorpos para receptores de Glicocortidóides. Avaliamos as áreas CA1, CA3 e Giro Denteado. O aprendizado e memória espacial foram avaliados através do teste do labirinto aquático de oito braços, antes e após o período de privação de sono. Avaliou-se a latência de escape e o número de erros obtidos. O grupo PSP apresentou um aumento na expressão de RGc nas regiões: CA1 e Giro Denteado, não se observando diferença significativa na região CA3. A PSP prévia aos testes de aprendizado e memória não provocou alterações significativas. A privação de sono pós-aprendizado também não produziu diferenças estatisticamente significativas, mas um aumento no tempo de latência de escape e número de erros sugere um enfraquecimento na consolidação da memória. O aumento na expressão de RGc nas áreas estudadas, pode ser consequente a uma alteração no balanço entre os receptores para corticosteróides no hipocampo e ser responsável por alterações no aprendizado e memória em ratos PSP.
Resumo:
Previous studies have shown that several types of stress can induce memory impairment. However, the memory effects of paradoxical sleep deprivation (PSD), a stressor in itself, are unclear. We therefore compared passive avoidance behavior of rats undergoing PSD and PSD stress yoked-control (PSC) using the "reversed flowerpot method." When rats were kept isolated on a PSC platform for 24 It immediately after criterion training, retention trials showed impaired aversive memory storage. When delayed for 24 h after criterion training, PSC stress did not disrupt retention performance. In rats subjected to PSD, either immediately or 24 It after criterion training, there was no disruption of aversive memory consolidation. These results suggest that, during stress, paradoxical sleep plays a role in erasing aversive memory traces, in line with the theory that we "dream in order to forget." (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.
Resumo:
Sleep spindles have been found to increase following an intense period of learning on a combination of motor tasks. It is not clear whether these changes are task specific, or a result of learning in general. The current study investigated changes in sleep spindles and spectral power following learning on cognitive procedural (C-PM), simple procedural (S-PM) or declarative (DM) learning tasks. It was hypothesized that S-PM learning would result in increases in Sigma power during Non-REM sleep, whereas C-PM and DM learning would not affect Sigma power. It was also hypothesized that DM learning would increase Theta power during REM sleep, whereas S-PM and C-PM learning would not affect Theta power. Thirty-six participants spent three consecutive nights in the sleep laboratory. Baseline polysomnographic recordings were collected on night 2. Participants were randomly assigned to one of four conditions: C-PM, S-PM, DM or control (C). Memory task training occurred on night 3 followed by polysomnographic recording. Re-testing on respective memory tasks occurred one-week following training. EEG was sampled at 256Hz from 16 sites during sleep. Artifact-free EEG from each sleep stage was submitted to power spectral analysis. The C-PM group made significantly fewer errors, the DM group recalled more, and the S-PM improved on performance from test to re-test. There was a significant night by group interaction for the duration of Stage 2 sleep. Independent t-tests revealed that the S-PM group had significantly more Stage 2 sleep on the test night than the C group. The C-PM and the DM group did not differ from controls in the duration of Stage 2 sleep on test night. There was no significant change in the duration of slow wave sleep (SWS) or REM sleep. Sleep spindle density (spindles/minute) increased significantly from baseline to test night following S-PM learning, but not for C-PM, DM or C groups. This is the first study to have shown that the same pattern of results was found for spindles in SWS. Low Sigma power (12-14Hz) increased significantly during SWS following S-PM learning but not for C-PM, DM or C groups. This effect was maximal at Cz, and the largest increase in Sigma power was at Oz. It was also found that Theta power increased significantly during REM sleep following DM learning, but not for S-PM, C-PM or C groups. This effect was maximal at Cz and the largest change in Theta power was observed at Cz. These findings are consistent with the previous research that simple procedural learning is consolidated during Stage 2 sleep, and provide additional data to suggest that sleep spindles across all non-REM stages and not just Stage 2 sleep may be a mechanism for brain plasticity. This study also provides the first evidence to suggest that Theta activity during REM sleep is involved in memory consolidation.
Resumo:
While sleep has been shown to be involved in memory consolidation and the selective enhancement of newly acquired memories of future relevance (Wilhelm, et al., 2011), limited research has investigated the role of sleep or future relevance in processes of memory reconsolidation. The current research employed a list-method directed forgetting procedure in which participants learned two lists of syllable pairs on Night 1 and received directed forgetting instructions on Night 2. On Night 2, one group (Labile; n = 15) received a memory reactivation treatment consisting of reminders designed to return memories of the learned lists to a labile state. A second group (Stable, n = 16) received similar reminders designed to leave memories of the learned lists in their stable state. No differences in forgetting were found across the two lists or groups. However, a negative correlation between frontal delta (1 – 4 Hz) electroencephalographic (EEG) power during Early Stage 2 non-rapid eye movement (NREM) sleep and forgetting of to-beremembered material was found exclusively in the Labile group (r = -.61, p < .05). Further, central theta (4 – 8 Hz ) EEG power during rapid eye movement (REM) sleep was found to correlate with directed forgetting exclusively in the Labile group (r = .81, p < .001) and total forgetting in the Stable group (r = .50, p < .05). These observed relationships support the proposed hypothesis suggesting that sleep processes are involved in the reconsolidation of labile memories, and that this reconsolidation may be selective for memories of future relevance. A role for sleep in the beneficial reprocessing of memories through the selective reconsolidation of labile memories in NREM sleep and the weakening of memories in REM sleep is discussed.
Resumo:
The present thesis investigates the responses to reflection in both the crayfish Procambarus clarkii and the fruit fly Drosophila melanogaster. Responses to reflection in crayfish depend on social status and the current work suggests that learning and memory consolidation are required for these responses to be altered. Crayfish were treated to either massed or spaced training fights prior to reflection testing. The results show that subordinate crayfish treated to spaced training display a response typical of subordinate crayfish but subordinate crayfish treated to massed training exhibit a response typical of dominant crayfish. Fruit flies are shown to be attracted to reflection and responses to reflection are described here for the first time. Responses in fruit flies are shown to be dependent on social status. The frequency of behaviours were altered in isolated flies but not socialized flies. The addition of pheromones cVA and 7,11-HD were used to investigate how the addition of chemical cues altered responses to reflection in fruit flies. Socialized fruit flies treated with cVA exhibited an increase in the frequency of behaviours on both mirrored and clear glass walls, while isolated flies exhibited a decrease. Socialized flies treated with 7,11-HD spent more time on mirrored walls compared to glass walls, whereas the frequency of all behaviours were decreased in isolated flies treated with 7,11-HD.
Resumo:
La vitamine K fait l’objet d’un intérêt croissant en regard du rôle qu’elle peut jouer dans la santé humaine hormis celui bien établi dans la coagulation sanguine. De plus en plus d’études expérimentales lui confèrent des fonctions dans le système nerveux central, particulièrement dans la synthèse des sphingolipides, l’activation de la protéine vitamine K-dépendante Gas6 et la protection contre les dommages oxydatifs. Toutefois, il demeure beaucoup moins bien établi si la perturbation de ces fonctions peut conduire à des déficits cognitifs. L’objectif principal de cette thèse est de vérifier l’hypothèse selon laquelle le statut vitaminique K des personnes âgées en santé est un déterminant de la performance cognitive. En vue de la réalisation de cet objectif, une meilleure compréhension des indicateurs du statut vitaminique K s’avérait nécessaire. Chacune des études présentées vise donc un objectif spécifique : 1) évaluer le nombre de rappels alimentaires de 24 heures non consécutifs nécessaire pour mesurer l’apport habituel de vitamine K des personnes âgées; 2) évaluer la valeur d’une seule mesure de la concentration sérique de vitamine K comme marqueur de l’exposition à long terme; et 3) examiner l’association entre le statut vitaminique K et la performance cognitive des personnes âgées en santé de la cohorte québécoise NuAge. Trois dimensions cognitives ont été évaluées soient la mémoire épisodique verbale et non-verbale, les fonctions exécutives et la vitesse de traitement de l’information. Cette thèse présente la première étude appuyant l’hypothèse d’un rôle de la vitamine K dans la cognition chez les personnes âgées. Spécifiquement, la concentration sérique de vitamine K a été associée positivement à la performance en mémoire épisodique verbale, et plus particulièrement au processus de consolidation de la trace mnésique. En accord avec les travaux chez l’animal et l’action de la protéine Gas6 dans l’hippocampe, un rôle spécifique de la vitamine K à l’étape de consolidation est biologiquement plausible. Aucune association significative n’a été observée avec les fonctions exécutives et la vitesse de traitement de l’information. Parallèlement, il a été démontré qu’une mesure unique de la concentration sérique de vitamine K constitue une mesure adéquate de l’exposition à long terme à la vitamine K. De même, il a été établi que six à 13 rappels alimentaires de 24 heures sont nécessaires pour estimer précisément l’apport de vitamine K des personnes âgées en santé. Collectivement, les résultats de ces deux études fournissent des informations précieuses aux chercheurs permettant une meilleure interprétation des études existantes et une meilleure planification des études futures. Les résultats de cette thèse constituent une avancée importante dans la compréhension du rôle potentiel de la vitamine K dans le système nerveux central et renforce la nécessité qu’elle soit considérée en tant que facteur nutritionnel du vieillissement cognitif, en particulier chez les personnes traitées par un antagoniste de la vitamine K.
Resumo:
El sueño, es indispensable para la recuperación, física, mental y de procesos como la consolidación de memoria, atención y lenguaje. La privación de sueño (PS) incide en la atención y concentración. La PS es inherente a la formación médica, pero no es claro el papel de los turnos nocturnos en estudiantes, porque no cumplen con un objetivo académico, pero hay relación con disminución de la salud, productividad, accidentes, y alteraciones en diversas actividades. Está descrito el impacto de la PS sobre la capacidad de aprendizaje y aspectos como el ánimo y las relaciones interpersonales. MÉTODOS: Se realizó un estudio analítico observacional de cohorte longitudinal, con tres etapas de medición a 180 estudiantes de Medicina de la Universidad del Rosario, que evaluó atención selectiva y concentración mediante la aplicación de la prueba d2, validada internacionalmente para tal fin. RESULTADOS: Se estudiaron 180 estudiantes, 115 mujeres, 65 hombres, entre los 18 y 26 años (promedio 21). Al inicio del estudio dormían en promedio 7,9 horas, cifra que se redujo a 5,8 y 6,3 en la segunda y tercera etapa respectivamente. El promedio de horas de sueño nocturno, disminuyó en el segundo y tercer momento (p<0,001); Además se encontró mediante la aplicación de la prueba d2, que hubo correlación significativa directa débil, entre el promedio de horas de sueño, y el promedio del desempeño en la prueba (r=0.168, p=0.029) CONCLUSIONES: La PS, con períodos de sueño menores a 7,2 horas, impactan de manera importante la atención selectiva, la concentración
Resumo:
Neural stem cells are precursors of neurons and glial cells. During brain development, these cells proliferate, migrate and differentiate into specific lineages. Recently neural stem cells within the adult central nervous system were identified. Informations are now emerging about regulation of stem cell proliferation, migration and differentiation by numerous soluble factors such as chemokines and cytokines. However, the signal transduction mechanisms downstream of these factors are less clear. Here, we review potential evidences for a novel central role of the transcription factor nuclear factor kappa B (NF-kappaB) in these crucial signal transduction processes. NF-kappaB is an inducible transcription factor detected in neurons, glia and neural stem cells. NF-kappaB was discovered by David Baltimore's laboratory as a transcription factor in lymphocytes. NF-kappaB is involved in many biological processes such as inflammation and innate immunity, development, apoptosis and anti-apoptosis. It has been recently shown that members of the NF-kappaB family are widely expressed by neurons, glia and neural stem cells. In the nervous system, NF-kappaB plays a crucial role in neuronal plasticity, learning, memory consolidation, neuroprotection and neurodegeneration. Recent data suggest an important role of NF-kappaB on proliferation, migration and differentiation of neural stem cells. NF-kappaB is composed of three subunits: two DNA-binding and one inhibitory subunit. Activation of NF-kappaB takes place in the cytoplasm and results in degradation of the inhibitory subunit, thus enabling the nuclear import of the DNA-binding subunits. Within the nucleus, several target genes could be activated. In this review, we suggest a model explaining the multiple action of NF-kappaB on neural stem cells. Furthermore, we discuss the potential role of NF-kappaB within the so-called brain cancer stem cells.
Resumo:
Sleep has emerged in the past decades as a key process for memory consolidation and restructuring. Given the universality of sleep across cultures, the need to reduce educational inequality, the low implementation cost of a sleep-based pedagogy, and its global scalability, it is surprising that the potential of improved sleep as a means of enhancing school education has remained largely unexploited. Students of various socio-economic status often suffer from sleep deficits. In principle, the optimization of sleep schedules both before and after classes should produce large positive benefits for learning. Here we review the biological and psychological phenomena underlying the cognitive role of sleep, present the few published studies on sleep and learning that have been performed in schools, and discuss potential applications of sleep to the school setting. Translational research on sleep and learning has never seemed more appropriate.
Resumo:
Sleep helps the consolidation of declarative memories in the laboratory, but the pro-mnemonic effect of daytime naps in schools is yet to be fully characterized. While a few studies indicate that sleep can indeed benefit school learning, it remains unclear how best to use it. Here we set out to evaluate the influence of daytime naps on the duration of declarative memories learned in school by students of 10–15 years old. A total of 584 students from 6th grade were investigated. Students within a regular classroom were exposed to a 15-min lecture on new declarative contents, absent from the standard curriculum for this age group. The students were then randomly sorted into nap and non-nap groups. Students in the nap group were conducted to a quiet room with mats, received sleep masks and were invited to sleep. At the same time, students in the non-nap group attended regular school classes given by their usual teacher (Experiment I), or English classes given by another experimenter (Experiment II). These 2 versions of the study differed in a number of ways. In Experiment I (n = 371), students were pre-tested on lecture-related contents before the lecture, were invited to nap for up to 2 h, and after 1, 2, or 5 days received surprise tests with similar content but different wording and question order. In Experiment II (n = 213), students were invited to nap for up to 50 min (duration of a regular class); surprise tests were applied immediately after the lecture, and repeated after 5, 30, or 110 days. Experiment I showed a significant ∼10% gain in test scores for both nap and non-nap groups 1 day after learning, in comparison with pre-test scores. This gain was sustained in the nap group after 2 and 5 days, but in the non-nap group it decayed completely after 5 days. In Experiment II, the nap group showed significantly higher scores than the non-nap group at all times tested, thus precluding specific conclusions. The results suggest that sleep can be used to enhance the duration of memory contents learned in school.