317 resultados para Meltwater
Resumo:
Sea level rise is among the most worrying consequences of climate change, and the biggest uncertainty of sea level predictions lies in the future behaviour of the ice sheets of Greenland and Antarctica. In this work, a literature review is made concerning the future of the Greenland ice sheet and the effect of its melting on Baltic Sea level. The relation between sea level and ice sheets is also considered more generally from a theoretical and historical point of view. Lately, surprisingly rapid changes in the amount of ice discharging into the sea have been observed along the coastal areas of the ice sheets, and the mass deficit of Greenland and West Antarctic ice sheets which are considered vulnerable to warming has been increasing from the 1990s. The changes are probably related to atmospheric or oceanic temperature variations which affect the flow speed of ice either via meltwater penetrating to the bottom of the ice sheet or via changes in the flow resistance generated by the floating parts of an ice stream. These phenomena are assumed to increase the mass deficit of the ice sheets in the warming climate; however, there is no comprehensive theory to explain and model them. Thus, it is not yet possible to make reliable predictions of the ice sheet contribution to sea level rise. On the grounds of the historical evidence it appears that sea level can rise rather rapidly, 1 2 metres per century, even during warm climate periods. Sea level rise projections of similar magnitude have been made with so-called semiempirical methods that are based on modelling the link between sea level and global mean temperature. Such a rapid rise would require considerable acceleration of the ice sheet flow. Stronger rise appears rather unlikely, among other things because the mountainous coastline restricts ice discharge from Greenland. The upper limit of sea level rise from Greenland alone has been estimated at half a metre by the end of this century. Due to changes in the Earth s gravity field, the sea level rise caused by melting ice is not spatially uniform. Near the melting ice sheet the sea level rise is considerably smaller than the global average, whereas farther away it is slightly greater than the average. Because of this phenomenon, the effect of the Greenland ice sheet on Baltic Sea level will probably be rather small during this century, 15 cm at most. Melting of the Antarctic ice sheet is clearly more dangerous for the Baltic Sea, but also very uncertain. It is likely that the sea level predictions will become more accurate in the near future as the ice sheet models develop.
Resumo:
Glaciers are often assumed to deform only at slow (i.e., glacial) rates. However, with the advent of high rate geodetic observations of ice motion, many of the intricacies of glacial deformation on hourly and daily timescales have been observed and quantified. This thesis explores two such short timescale processes: the tidal perturbation of ice stream motion and the catastrophic drainage of supraglacial meltwater lakes. Our investigation into the transmission length-scale of a tidal load represents the first study to explore the daily tidal influence on ice stream motion using three-dimensional models. Our results demonstrate both that the implicit assumptions made in the standard two-dimensional flow-line models are inherently incorrect for many ice streams, and that the anomalously large spatial extent of the tidal influence seen on the motion of some glaciers cannot be explained, as previously thought, through the elastic or viscoelastic transmission of tidal loads through the bulk of the ice stream. We then discuss how the phase delay between a tidal forcing and the ice stream’s displacement response can be used to constrain in situ viscoelastic properties of glacial ice. Lastly, for the problem of supraglacial lake drainage, we present a methodology for implementing linear viscoelasticity into an existing model for lake drainage. Our work finds that viscoelasticity is a second-order effect when trying to model the deformation of ice in response to a meltwater lake draining to a glacier’s bed. The research in this thesis demonstrates that the first-order understanding of the short-timescale behavior of naturally occurring ice is incomplete, and works towards improving our fundamental understanding of ice behavior over the range of hours to days.
Resumo:
My focus in this thesis is to contribute to a more thorough understanding of the mechanics of ice and deformable glacier beds. Glaciers flow under their own weight through a combination of deformation within the ice column and basal slip, which involves both sliding along and deformation within the bed. Deformable beds, which are made up of unfrozen sediment, are prevalent in nature and are often the primary contributors to ice flow wherever they are found. Their granular nature imbues them with unique mechanical properties that depend on the granular structure and hydrological properties of the bed. Despite their importance for understanding glacier flow and the response of glaciers to changing climate, the mechanics of deformable glacier beds are not well understood.
Our general approach to understanding the mechanics of bed deformation and their effect on glacier flow is to acquire synoptic observations of ice surface velocities and their changes over time and to use those observations to infer the mechanical properties of the bed. We focus on areas where changes in ice flow over time are due to known environmental forcings and where the processes of interest are largely isolated from other effects. To make this approach viable, we further develop observational methods that involve the use of mapping radar systems. Chapters 2 and 5 focus largely on the development of these methods and analysis of results from ice caps in central Iceland and an ice stream in West Antarctica. In Chapter 3, we use these observations to constrain numerical ice flow models in order to study the mechanics of the bed and the ice itself. We show that the bed in an Iceland ice cap deforms plastically and we derive an original mechanistic model of ice flow over plastically deforming beds that incorporates changes in bed strength caused by meltwater flux from the surface. Expanding on this work in Chapter 4, we develop a more detailed mechanistic model for till-covered beds that helps explain the mechanisms that cause some glaciers to surge quasi-periodically. In Antarctica, we observe and analyze the mechanisms that allow ocean tidal variations to modulate ice stream flow tens of kilometers inland. We find that the ice stream margins are significantly weakened immediately upstream of the area where ice begins to float and that this weakening likely allows changes in stress over the floating ice to propagate through the ice column.
Resumo:
A baseline environmental characterization of the inner Kachemak Bay, Alaska was conducted using standardized National Status and Trends Bioeffects Program methods. Three sites near the village of Port Graham were also sampled for comparison. Concentrations of over 120 organic and metallic contaminants were analyzed. Ambient toxicity was assessed using two bioassays. A detailed benthic community condition assessment was performed. Habitat parameters (e.g. depth, salinity, temperature, dissolved oxygen, sediment grain size, and organic carbon content) that influence species and contaminant distribution were also measured at each sampling site. The following is the synopsis of findings • Sediments were mostly mixed silt and sand with pockets of muddy zones. Organic compounds (PAHs, DDTs, PCBs, chlorinated pesticides) were detected throughout the bay but at relatively low concentrations. With some exceptions, metals concentrations were relatively low and probably reflect the input of glacial runoff. • Homer Harbor had elevated concentrations of metallic and organic contaminants. Concentrations of organic contaminants measured were five to ten times higher in the harbor sites than in the open bay sites. Tributyltin was elevated in Homer Harbor relative to the other areas. • There was no evidence of residual PAHs attributable to oil spills, outside of local input in the confines of the harbor. • The benthic community is very diverse. Specific community assemblages were distributed based on depth and water clarity. Species richness and diversity was lower in the eastern end of the bay in the vicinity of the Fox River input. Abundance was also generally lower in the eastern portion of the study area, and in the intertidal areas near Homer. The eastern portions of the bay are stressed by the sediment load from glacial meltwater. • Significant toxicity was virtually absent. • The benthic fauna at Port Graham contained a significant number of species not found in Kachemak Bay. • Selected metal concentrations were elevated at Port Graham relative to Kachemak Bay, probably due to local geology. Organic contaminants were elevated at a site south of the village.
Resumo:
A baseline environmental characterization of the inner Kachemak Bay, Alaska was conducted using the sediment quality triad approach based on sediment chemistry, sediment toxicity, and benthic invertebrate community structure. The study area was subdivided into 5 strata based on geophysical and hydrodynamic patterns in the bay (eastern and western intertidal mud flats, eastern and western subtidal, and Homer Harbor). Three to seven locations were synoptically sampled within each stratum using a stratified random statistical design approach. Three sites near the village of Port Graham and two sites in the footprint of a proposed Homer Harbor expansion were also collected for comparison. Concentrations of over 120 organic and metallic contaminants were analyzed. Ambient toxicity was assessed using two amphipod bioassays. A detailed benthic community condition assessment was performed. Habitat parameters (depth, salinity, temperature, dissolved oxygen, sediment grain size, and organic carbon content) that influence species and contaminant distribution were also measured at each sampling site. Sediments were mostly mixed silt and sand; characteristic of high energy habitats, with pockets of muddy zones. Organic compounds (PAHs, DDTs, PCBs, cyclodienes, cyclohexanes) were detected throughout the bay but at relatively low concentrations. Tributyltin was elevated in Homer Harbor relative to the other strata. With a few exceptions, metals concentrations were relatively low and probably reflect the input of glacial runoff. Relative to other sites, Homer Harbor sites were shown to have elevated concentrations of metallic and organic contaminants. The Homer Harbor stratum however, is a deep, low energy depositional environment with fine grained sediment. Concentrations of organic contaminants measured were five to ten times higher in the harbor sites than in the open bay sites. Concentration of PAHs is of a particular interest because of the legacy of oil spills in the region. There was no evidence of residual PAHs attributable to oil spills, outside of local input, beyond the confines of the harbor. Concentrations were one to ten times below NOAA sediment quality guidelines. Selected metal concentrations were found to be relatively elevated compared to other data collected in the region. However, levels are still very low in the scale of NOAA’s sediment quality guidelines, and therefore appear to pose little or no ecotoxicity threat to biota. Infaunal assessment showed a diverse assemblage with more than 240 taxa recorded and abundances greater than 3,000 animals m-22 in all but a few locations. Annelid worms, crustaceans, snails, and clams were the dominant taxa accounting for 63 %, 19%, 5%, and 7 % respectively of total individuals. Specific benthic community assemblages were identified that were distributed based on depth and water clarity. Species richness and diversity was lower in the eastern end of the bay in the vicinity of the Fox River input. Abundance was also generally lower in the eastern portion of the study area, and in the intertidal areas near Homer. The eastern portions of the bay are stressed by the sediment load from glacial meltwater. Significant toxicity was virtually absent. Conditions at the sites immediately outside the existing Homer Harbor facility did not differ significantly from other subtidal locations in the open Kachemak Bay. The benthic fauna at Port Graham contained a significant number of species not found in Kachemak Bay. Contaminant conditions were variable depending on specific location. Selected metal concentrations were elevated at Port Graham and some were lower relative to Kachemak Bay, probably due to local geology. Some organic contaminants were accumulating at a depositional site.
Resumo:
To assess the contribution of accumulated winter precipitation and glacial meltwater to the recharge of deep ground water flow systems in fracture crystalline rocks, measurements of environmental isotope ratios, hydrochemical composition, and in situ parameters of ground water were performed in a deep tunnel. The measurements demonstrate the significance of these ground water recharge components for deep ground water flow systems in fractured granites of a high alpine catchment in the Central Alps, Switzerland. Hydrochemical and in situ parameters, as well as d18O in ground water samples collected in the tunnel, show only small temporal variations. The precipitation record of d18O shows seasonal variations of ~14‰ and a decrease of 0.23‰ ± 0.03‰ per 100 m elevation gain. d2H and d18O in precipitation are well correlated and plot close to the meteoric water line, as well as d2H and d18O in ground water samples, reflecting the meteoric origin of the latter. The depletion of 18O in ground water compared to 18O content in precipitation during the ground water recharge period indicates significant contributions from accumulated depleted winter precipitation to ground water recharge. The hydrochemical composition of the encountered ground water, Na-Ca-HCO3-SO4(-F), reflects an evolution of the ground water along the flowpath through the granite body. Observed tritium concentrations in ground water range from 2.6 to 16.6 TU, with the lowest values associated with a local negative temperature anomaly and anomalous depleted 18O in ground water. This demonstrates the effect of local ground water recharge from meltwater of submodern glacial ice. Such localized recharge from glaciated areas occurs along preferential flowpaths within the granite body that are mainly controlled by observed hydraulic active shear fractures and cataclastic faults.
Resumo:
The Northern Hemisphere cooling event 8200 years ago is believed to represent the last known major freshwater pulse into the North Atlantic as a result of the final collapse of the North American Laurentide ice sheet. This pulse of water is generally believed to have occurred independently of orbital variations and provides an analogue for predicted increases in high-latitude precipitation and ice melt as a result of anthropogenically driven future climate change. The precise timing, duration and magnitude of this event, however, are uncertain, with suggestions that the 100-yr meltwater cooling formed part of a longer-term cold period in the early Holocene. Here we undertook a multiproxy, high-resolution investigation of a peat sequence at Dooagh, Achill Island, on the west coast of Ireland, to determine whether the 8200-year cold event impacted upon the terrestrial vegetation immediately downwind of the proposed changes in the North Atlantic. We find clear evidence for an oscillation in the early Holocene using various measures of pollen, indicating a disruption in the vegetation leading to a grassland-dominated landscape, most probably driven by changes in precipitation rather than temperature. Radiocarbon dating was extremely problematic, however, with bulk peat samples systematically too young for the North Atlantic event, suggesting significant contamination from downward root penetration. The sustained disruption to vegetation over hundreds of years at Dooagh indicates the landscape was impacted by a long-term cooling event in the early Holocene, and not the single century length 8200-year meltwater event proposed in many other records in the North Atlantic region.
Resumo:
The problem of insufficient age-control limits the utilisation of the 8.2 ka BP event for modelling freshwater forcing in climate change studies. High-resolution radiocarbon dates, magnetic susceptibility and lithostratigraphic evidence from a lake sediment core from Nedre Hervavatnet located at Sygnefjell in western Norway provide a record of the early Holocene. We use the method of radiocarbon wiggle-match dating of the lake sediments using the non-linear relationship between the C-14 calibration curve and the consecutive accumulation order of the sample series in order to build a high-resolution age-model. The timing and duration of Holocene environmental changes is estimated using 38 AMS radiocarbon dates on terrestrial macrofossils, insects and chironomids covering the time period from 9750 to 1180 cal BP. Chironomids, Salix and Betula leaves produce the most consistent results. Sedimentological and physical properties of the core suggest that three meltwater events with high sedimentation rates are superimposed on a long-term trend with glacier retreat between 9750 and 8000 cal BP. The lake sediment sequence of Nedre Hervavatnet demonstrates the following: only a reliable high-resolution geochronology based on carefully selected terrestrial macrofossils allows the reconstruction of a more refined and complex environmental change history before and during the 8.2 ka event. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Cooling and sinking of dense saline water in the Norwegian–Greenland Sea is essential for the formation of North Atlantic Deep Water. The convection in the Norwegian–Greenland Sea allows for a northward flow of warm surface water and southward transport of cold saline water. This circulation system is highly sensitive to climate change and has been shown to operate in different modes. In ice cores the last glacial period is characterized by millennial-scale Dansgaard–Oeschger (D–O) events of warm interstadials and cold stadials. Similar millennial-scale variability (linked to D–O events) is evident from oceanic cores, suggesting a strong coupling of the atmospheric and oceanic circulations system. Particularly long-lasting cold stadials correlate with North Atlantic Heinrich events, where icebergs released from the continents caused a spread of meltwater over the northern North Atlantic and Nordic seas. The meltwater layer is believed to have caused a stop or near-stop in the deep convection, leading to cold climate. The spreading of meltwater and changes in oceanic circulation have a large influence on the carbon exchange between atmosphere and the deep ocean and lead to profound changes in the 14C activity of the surface ocean. Here we demonstrate marine 14C reservoir ages (R) of up to c. 2000 years for Heinrich event H4. Our R estimates are based on a new method for age model construction using identified tephra layers and tie-points based on abrupt interstadial warmings.
Resumo:
In the deglacial sequence of the largest end moraine system of the Italian Alps, we focused on the latest culmination of the Last Glacial Maximum, before a sudden downwasting of the piedmontane lobe occupying the modern lake basin. We obtained a robust chronology for this culmination and for the subsequent deglacial history by cross-radiocarbon dating of a proximal fluvioglacial plain and of a deglacial continuous lake sedimentation. We used reworked dinocysts to locate sources of glacial abrasion and to mark the input of glacial meltwater until depletion. The palynological record from postglacial lake sediments provided the first vegetation chronosequence directly reacting to the early Lateglacial withdrawal so far documented in the Alps.
Glacier collapse occurred soon after 17.46 +/- 0.2 ka cal BP, which is, the Manerba advance culmination. Basin deglaciation of several overdeepened foreland piedmont lakes on southern and northern sides of the Alps appears to be synchronous at millennial scale and near-synchronous with large-scale glacial retreat at global scale. The pioneering succession shows a first afforestation step at a median modeled age of 64 years after deglaciation, while rapid tree growth lagged 7 centuries. Between 16.4 +/- 0.16 and 15.5 +/- 0.16 ka cal BP, a regressive phase interrupted forest growth marking a Lateglacial phase of continental-dry climate predating GI-1. This event, spanning the most advanced phases of North-Atlantic H1, is consistently radiocarbon-framed at three deglacial lake records so far investigated on the Italian side of the Alps. Relationships with the Gschnitz stadial from the Alpine record of Lateglacial advances are discussed
Resumo:
Toxoplasma gondii, un protozoaire très répandu dans le monde, peut infecter de nombreuses espèces homéothermes incluant les mammifères et les oiseaux qui développent alors une toxoplasmose. L’impact de la toxoplasmose en termes de santé publique est majeur, particulièrement chez les personnes immunodéprimées et les foetus. Les niveaux d’infection humaine dans certaines régions de l’Arctique Canadien sont parmi les plus élevés au monde et ce, malgré l’absence de félidés qui sont les seuls hôtes capables d’excréter T. gondii. Plusieurs études ont suggéré la consommation de viande crue de mammifères marins et notamment de phoques comme source d’infection des Inuits. Notre travail de recherche visait à comprendre les mécanismes de dispersion de T. gondii dans les écosystèmes aquatiques menant à la contamination du milieu marin de l’Arctique par des oocystes, et à évaluer l’importance de cette voie de dispersion dans l’infection des phoques et conséquemment dans celle des Inuits. Notre hypothèse était que les oocystes de T. gondii, excrétés durant l’hiver par des félidés dans le Subarctique et transportés par les rivières pendant la fonte printanière, contaminaient les estuaires de l’Arctique Canadien. Dans un premier temps, une étude transversale de séroprévalence chez les phoques de l’Arctique Canadien a montré que ces populations étaient infectées par T. gondii et pouvaient ainsi a priori constituer une source d’infection pour les Inuit. Des variations spatio-temporelles de la séroprévalence étaient observées suggérant un lien potentiel avec des variations dans la contamination environnementale par les oocystes. Un schéma conceptuel explicitant les mécanismes de transport et de devenir des oocystes de T. gondii, du phénomène de la fonte de la neige jusqu’à l’exposition des organismes marins, a été proposé dans le chapitre suivant. Des interactions entre les différents mécanismes identifiés, qui agissent sur des échelles spatio-temporelles variées, devraient favoriser l’apparition de concentrations relativement élevées aux estuaires permettant ainsi l’exposition et potentiellement l’infection de phoques. Pour évaluer la contamination environnementale par les oocystes excrétés par la population de lynx du bassin versant de l’Arctique Canadien (les seuls félidés majoritairement distribués dans ce vaste territoire), nous avons mené une étude sérologique de type transversale dans cette population. Cette étude a permis de montrer que des lynx étaient infectés par T. gondii et a également suggéré que la dynamique des cycles de populations lynx-lièvres pouvait être un processus important dans la transmission de T. gondii. Finalement, la modélisation du transport hydrique des oocystes a indiqué que les concentrations hypothétiques d’oocystes dans l’eau de la fonte pourraient être suffisantes pour permettre l’exposition au niveau des estuaires de bivalves filtreurs, qui sont des proies pour les phoques et donc potentiellement des sources infectieuses pour ces derniers. Dans des écosystèmes nordiques en pleine mutation, la compréhension des mécanismes de transmission d’agents pathogènes d’origine hydrique comme T. gondii est plus que nécessaire, notamment dans le but de protéger les populations fragilisées de ces régions.
Resumo:
Rapidly-flowing sectors of an ice sheet (ice streams) can play ail important role in abrupt climate change through tile delivery of icebergs and meltwater and tile Subsequent disruption of ocean thermohaline circulation (e.g., the North Atlantic's Heinrich events). Recently, several cores have been raised from the Arctic Ocean which document the existence of massive ice export events during tile Late Pleistocene and whose provenance has been linked to Source regions in the Canadian Arctic Archipelago. In this paper, satellite imagery is used to map glacial geomorphology in the vicinity of Victoria Island, Banks Island and Prince of Wales Island (Canadian Arctic) in order to reconstruct ice flow patterns in the highly complex glacial landscape. A total of 88 discrete flow-sets are mapped and of these, 13 exhibit the characteristic geomorphology of palaeo-ice streams (i.e., parallel patterns of large, highly elongated mega-scale glacial lineations forming a convergent flow pattern with abrupt lateral margins). Previous studies by other workers and cross-cutting relationships indicate that the majority of these ice streams are relatively young and operated during or immediately prior to deglaciation. Our new mapping, however, documents a large (> 700 km long; 110 km wide) and relatively old ice stream imprint centred in M'Clintock Channel and converging into Viscount Melville Sound. A trough mouth fan located on the continental shelf Suggests that it extended along M'Clure Strait and was grounded at tile shelf edge. The location of the M'Clure Strait Ice Stream exactly matches the Source area of 4 (possibly 5) major ice export events recorded in core PS 1230 raised from Fram Strait, the major ice exit for the Arctic Ocean. These ice export events occur at similar to 12.9, similar to 15.6, similar to 22 and 29.8 ka (C-14 yr BP) and we argue that they record vigorous episodes of activity of the M'Clure Strait Ice Stream. The timing of these events is remarkably similar to the North Atlantic's Heinrich events and we take this as evidence that the M'Clure Strait Ice Stream was also activated around the same time. This may hold important implications for tile cause of the North Atlantic's Heinrich events and hints at tile possibility of a pall-ice sheet response. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Victoria Island lies at the north-western extremity of the region covered by the vast North American Laurentide Ice Sheet (LIS) in the Canadian Arctic Archipelago. This area is significant because it linked the interior of the LIS to the Arctic Ocean, probably via a number of ice streams. Victoria Island, however, exhibits a remarkably complex glacial landscape, with several successive generations of ice flow indicators superimposed on top of each other and often at abrupt (90 degrees) angles. This complexity represents a major challenge to those attempting to produce a detailed reconstruction of the glacial history of the region. This paper presents a map of the glacial geomorphology of Victoria Island. The map is based on analysis of Landsat Enhanced Thematic Plus (ETM+) satellite imagery and contains over 58,000 individual glacial features which include: glacial lineations, moraines (terminal, lateral, subglacial shear margin), hummocky moraine, ribbed moraine, eskers, glaciofluvial deposits, large meltwater channels, and raised shorelines. The glacial features reveal marked changes in ice flow direction and vigour over time. Moreover, the glacial geomorphology indicates a non-steady withdrawal of ice during deglaciation, with rapidly flowing ice streams focussed into the inter-island troughs and several successively younger flow patterns superimposed on older ones. It is hoped that detailed analysis of this map will lead to an improved reconstruction of the glacial history of this area which will provide other important insights, for example, with respect to the interactions between ice streaming, deglaciation and Arctic Ocean meltwater events.
Resumo:
The commonly held view of the conditions in the North Atlantic at the last glacial maximum, based on the interpretation of proxy records, is of large-scale cooling compared to today, limited deep convection, and extensive sea ice, all associated with a southward displaced and weakened overturning thermohaline circulation (THC) in the North Atlantic. Not all studies support that view; in particular, the "strength of the overturning circulation" is contentious and is a quantity that is difficult to determine even for the present day. Quasi-equilibrium simulations with coupled climate models forced by glacial boundary conditions have produced differing results, as have inferences made from proxy records. Most studies suggest the weaker circulation, some suggest little or no change, and a few suggest a stronger circulation. Here results are presented from a three-dimensional climate model, the Hadley Centre Coupled Model version 3 (HadCM3), of the coupled atmosphere - ocean - sea ice system suggesting, in a qualitative sense, that these diverging views could all have occurred at different times during the last glacial period, with different modes existing at different times. One mode might have been characterized by an active THC associated with moderate temperatures in the North Atlantic and a modest expanse of sea ice. The other mode, perhaps forced by large inputs of meltwater from the continental ice sheets into the northern North Atlantic, might have been characterized by a sluggish THC associated with very cold conditions around the North Atlantic and a large areal cover of sea ice. The authors' model simulation of such a mode, forced by a large input of freshwater, bears several of the characteristics of the Climate: Long-range Investigation, Mapping, and Prediction (CLIMAP) Project's reconstruction of glacial sea surface temperature and sea ice extent.
Resumo:
Uncertainties in sea-level projections for the 21st century have focused ice sheet modelling efforts to include the processes that are thought to be contributing to the recently observed rapid changes at ice sheet margins. This effort is still in its infancy, however, leaving us unable to make reliable predictions of ice sheet responses to a warming climate if such glacier accelerations were to increase in size and frequency. The geological record, however, has long identified examples of nonlinear ice sheet response to climate forcing (Shackleton NJ, Opdyke ND. 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28–239, late Pliocene to latest Pleistocene. Geological Society of America Memoirs145: 449–464; Fairbanks RG. 1989. A 17,000 year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature342: 637–642; Bard E, Hamelin B, Arnold M, Montaggioni L, Cabioch G, Faure G, Rougerie F. 1996. Sea level record from Tahiti corals and the timing of deglacial meltwater discharge. Nature382: 241–244), thus suggesting an alternative strategy for constraining the rate and magnitude of sea-level change that we might expect by the end of this century. Copyright © 2009 John Wiley & Sons, Ltd.