960 resultados para Melnikov chaos prediction theory
Resumo:
Flory solution theory modified by Hamada et al. (Macromolecules, 1980, 13, 729) was used to predict the miscibility of blends of poly(ethylene oxide) with poly(methyl methacrylate) (PEO-aPMMA) and with poly(vinyl acetate) (PEO-PVAc). Interaction parameters of a PEO-aPMMA blend with the weight ratio of PEO/aPMMA = 50/50 at the temperature range of 393-433 K and PEO-PVAc blends with different compositions and temperatures were calculated from the determined equation-of-state parameters based on Flory solution theory modified by Hamada ed al. Results show that interaction parameters of the PEO-aPMMA blend are negative and can be comparable with values obtained from neutron-scattering measurements by Ito et al. (Macromolecules, 1987, 20, 2213). Also, interaction parameters and excess volumes of PEO-PVAc blends are negative and increase with enhancing the content of PEO and the temperature. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The thesis report results obtained from a detailed analysis of the fluctuations of the rheological parameters viz. shear and normal stresses, simulated by means of the Stokesian Dynamics method, of a macroscopically homogeneous sheared suspension of neutrally buoyant non-Brownian suspension of identical spheres in the Couette gap between two parallel walls in the limit of vanishingly small Reynolds numbers using the tools of non-linear dynamics and chaos theory for a range of particle concentration and Couette gaps. The thesis used the tools of nonlinear dynamics and chaos theory viz. average mutual information, space-time separation plots, visual recurrence analysis, principal component analysis, false nearest-neighbor technique, correlation integrals, computation of Lyapunov exponents for a range of area fraction of particles and for different Couette gaps. The thesis observed that one stress component can be predicted using another stress component at the same area fraction. This implies a type of synchronization of one stress component with another stress component. This finding suggests us to further analysis of the synchronization of stress components with another stress component at the same or different area fraction of particles. The different model equations of stress components for different area fraction of particles hints at the possible existence a general formula for stress fluctuations with area fraction of particle as a parameter
Resumo:
Mathematical models have been vitally important in the development of technologies in building engineering. A literature review identifies that linear models are the most widely used building simulation models. The advent of intelligent buildings has added new challenges in the application of the existing models as an intelligent building requires learning and self-adjusting capabilities based on environmental and occupants' factors. It is therefore argued that the linearity is an impropriate basis for any model of either complex building systems or occupant behaviours for control or whatever purpose. Chaos and complexity theory reflects nonlinear dynamic properties of the intelligent systems excised by occupants and environment and has been used widely in modelling various engineering, natural and social systems. It is proposed that chaos and complexity theory be applied to study intelligent buildings. This paper gives a brief description of chaos and complexity theory and presents its current positioning, recent developments in building engineering research and future potential applications to intelligent building studies, which provides a bridge between chaos and complexity theory and intelligent building research.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasingly complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I) reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develops conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to building simulation scientists, initiates a dialogue and builds bridges between scientists and engineers, and stimulates future research about a wide range of issues on building environmental systems.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.
Resumo:
Process scheduling techniques consider the current load situation to allocate computing resources. Those techniques make approximations such as the average of communication, processing, and memory access to improve the process scheduling, although processes may present different behaviors during their whole execution. They may start with high communication requirements and later just processing. By discovering how processes behave over time, we believe it is possible to improve the resource allocation. This has motivated this paper which adopts chaos theory concepts and nonlinear prediction techniques in order to model and predict process behavior. Results confirm the radial basis function technique which presents good predictions and also low processing demands show what is essential in a real distributed environment.
Resumo:
This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.
Resumo:
In this paper we consider a self-excited mechanical system by dry friction in order to study the bifurcational behavior of the arisen vibrations. The oscillating system consists of a mass block-belt-system which is self-excited by static and Coulomb friction. We analyze the system behavior numerically through bifurcation diagrams, phase portraits, frequency spectra and Poincare maps, which show the existence of nonhomoclinic and homoclinic chaos and a route to homoclinic chaos. The homoclinic chaos is also analyzed analytically via the Melnikov prediction method. The system dynamic is characterized by the existence of two potential wells in the phase plane which exhibit rich bifurcational and chaotic behavior.
Resumo:
Predictability is related to the uncertainty in the outcome of future events during the evolution of the state of a system. The cluster weighted modeling (CWM) is interpreted as a tool to detect such an uncertainty and used it in spatially distributed systems. As such, the simple prediction algorithm in conjunction with the CWM forms a powerful set of methods to relate predictability and dimension.
Resumo:
Forecasting, for obvious reasons, often become the most important goal to be achieved. For spatially extended systems (e.g. atmospheric system) where the local nonlinearities lead to the most unpredictable chaotic evolution, it is highly desirable to have a simple diagnostic tool to identify regions of predictable behaviour. In this paper, we discuss the use of the bred vector (BV) dimension, a recently introduced statistics, to identify the regimes where a finite time forecast is feasible. Using the tools from dynamical systems theory and Bayesian modelling, we show the finite time predictability in two-dimensional coupled map lattices in the regions of low BV dimension. © Indian Academy of Sciences.