972 resultados para Medical device industry
Resumo:
Quadro normativo sui Dispositivi Medici e la sua evoluzione (2007/47,UNI CEI EN ISO 14971). Software DM: processo di certificazione,gestione di reti IT medicali, ruoli e responsabilità (CEI 80001-1). Casi d'uso: Linee guida: MEDDEV e linee guida svedesi più relativi esempi applicabili alle aziende sanitarie.
Resumo:
The Federal Food and Drug Administration (FDA) and the Centers for Medicare and Medicaid (CMS) play key roles in making Class III, medical devices available to the public, and they are required by law to meet statutory deadlines for applications under review. Historically, both agencies have failed to meet their respective statutory requirements. Since these failures affect patient access and may adversely impact public health, Congress has enacted several “modernization” laws. However, the effectiveness of these modernization laws has not been adequately studied or established for Class III medical devices. ^ The aim of this research study was, therefore, to analyze how these modernization laws may have affected public access to medical devices. Two questions were addressed: (1) How have the FDA modernization laws affected the time to approval for medical device premarket approval applications (PMAs)? (2) How has the CMS modernization law affected the time to approval for national coverage decisions (NCDs)? The data for this research study were collected from publicly available databases for the period January 1, 1995, through December 31, 2008. These dates were selected to ensure that a sufficient period of time was captured to measure pre- and post-modernization effects on time to approval. All records containing original PMAs were obtained from the FDA database, and all records containing NCDs were obtained from the CMS database. Source documents, including FDA premarket approval letters and CMS national coverage decision memoranda, were reviewed to obtain additional data not found in the search results. Analyses were conducted to determine the effects of the pre- and post-modernization laws on time to approval. Secondary analyses of FDA subcategories were conducted to uncover any causal factors that might explain differences in time to approval and to compare with the primary trends. The primary analysis showed that the FDA modernization laws of 1997 and 2002 initially reduced PMA time to approval; after the 2002 modernization law, the time to approval began increasing and continued to increase through December 2008. The non-combined, subcategory approval trends were similar to the primary analysis trends. The combined, subcategory analysis showed no clear trends with the exception of non-implantable devices, for which time to approval trended down after 1997. The CMS modernization law of 2003 reduced NCD time to approval, a trend that continued through December 2008. This study also showed that approximately 86% of PMA devices do not receive NCDs. ^ As a result of this research study, recommendations are offered to help resolve statutory non-compliance and access issues, as follows: (1) Authorities should examine underlying causal factors for the observed trends; (2) Process improvements should be made to better coordinate FDA and CMS activities to include sharing data, reducing duplication, and establishing clear criteria for “safe and effective” and “reasonable and necessary”; (3) A common identifier should be established to allow tracking and trending of applications between FDA and CMS databases; (4) Statutory requirements may need to be revised; and (5) An investigation should be undertaken to determine why NCDs are not issued for the majority of PMAs. Any process improvements should be made without creating additional safety risks and adversely impacting public health. Finally, additional studies are needed to fully characterize and better understand the trends identified in this research study.^
Resumo:
Mode of access: Internet.
Resumo:
Hearings held July 28-31, 1975.
Resumo:
Central venous catheters (CVCs) are being utilized with increasing frequency in intensive care and general medical wards. In spite of the extensive experience gained in their application, CVCs are related to the long-term risks of catheter sheath formation, infection, and thrombosis (of the catheter or vessel itself) during catheterization. Such CVC-related-complications are associated with increased morbidity, mortality, duration of hospitalization, and medical care cost [1]. The present study incorporates a novel group of Factor XIIIa (FXIIIa, plasma transglutaminase) inhibitors into a lubricious silicone elastomer in order to generate an optimized drug delivery system whereby a secondary sustained drug release profile occurs following an initial burst release for catheters and other medical devices. We propose that the incorporation of FXIIIa inhibitors into catheters, stents, and other medical implant devices would reduce the incidence of catheter sheath formation, thrombotic occlusion, and associated staphylococcal infection. This technique could be used as a local delivery system for extended release with an immediate onset of action for other poorly aqueous soluble compounds. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Healthcare providers are under ever increasing pressure to deliver more technologically advanced care without increasing costs. Innovation is essential (Darzi, 2008), and for this healthcare providers rely on innovation within commercial companies. SMEs have an important part to play in this sector (NHS Supply Chain Parliamentary Brief, 2013). Collaboration between SME suppliers and the NHS for innovation forms the focus of this paper. We examine the academic literature on interorganizational innovation including academic insights from the areas of forward commitment procurement (Environmental Innovation Advisory Group, 2003-2008), pre-commercial procurement (Bos & Corvers, 2007), innovation and SMEs. We then explore practice, first from a policy and business sector perspective. Second, we present evidence from fifteen cases of interorganizational innovation projects involving SMEs and UK healthcare providers. Our findings show much effort is being put into creating opportunities for more interorganizational innovation of medical devices. Working across organizational boundaries presents added complexity to the innovation environment and process, and the challenge of developing high-quality cross-boundary group interaction.
Resumo:
Measuring and fulfilling user requirements during medical device development will result in successful products that improve patient safety, improve device effectiveness and reduce product recalls and modifications. Medical device users are an extremely heterogeneous group and for any one device the users may include patients, their carers as well as various healthcare professionals. There are a number of factors that make capturing user requirements for medical device development challenging including the ethical and research governance involved with studying users as well as the inevitable time and financial constraints. Most ergonomics research methods have been developed in response to such practical constraints and a number of these have potential for medical device development. Some are suitable for specific points in the device cycle such as contextual inquiry and ethnography, others, such as usability tests and focus groups may be used throughout development. When designing user research there are a number of factors that may affect the quality of data collected including the sample of users studied, the use of proxies instead of real end-users and the context in which the research is performed. As different methods are effective in identifying different types of data, ideally more than one method should be used at each point in development, however financial and time factors may often constrain this.
Resumo:
This article examines new product development (NPD) in small and medium-sized Brazilian enterprises (SMEs) in two technology-based industries: medical devices and process control automation devices. A conceptual model that categorizes factors that contribute to the success of a new product was established. The data were collected from a sample of 62 Brazilian SMEs. The conceptual model was tested to examine the relationships between NPD practices and new product success. Data analysis reveals that new product success in medical device companies is related to organizational characteristics such as NPD proficiency and marketing skills; while in process control automation device companies, they deal in a large degree with product differentiation, innovation and capability to analyze the targeted market. Due to the relatively small sample size, caution should be exercised when interpreting the results.
Resumo:
The work presented in this thesis was developed in collaboration with a Portuguese company, BeyonDevices, devoted to pharmaceutical packaging, medical technology and device industry. Specifically, the composition impact and surface modification of two polymeric medical devices from the company were studied: inhalers and vaginal applicators. The polyethylene-based vaginal applicator was modified using supercritical fluid technology to acquire self-cleaning properties and prevent the transport of bacteria and yeasts to vaginal flora. For that, in-situ polymerization of 2-substituted oxazolines was performed within the polyethylene matrix using supercritical carbon dioxide. The cationic ring-opening polymerization process was followed by end-capping with N,N-dimethyldodecylamine. Furthermore, for the same propose, the polyethylene matrix was impregnated with lavender oil in supercritical medium. The obtained materials were characterized physical and morphologically and the antimicrobial activity against bacteria and yeasts was accessed. Materials modified using 2-substituted oxazolines showed an effective killing ability for all the tested microorganisms, while the materials modified with lavender oil did not show antimicrobial activity. Only materials modified with oligo(2-ethyl-2-oxazoline) maintain the activity during the long term stability. Furthermore, the cytotoxicity of the materials was tested, confirming their biocompatibilty. Regarding the inhaler, its surface was modified in order to improve powder flowability and consequently, to reduce powder retention in the inhaler´s nozzle. New dry powder inhalers (DPIs), with different needle’s diameters, were evaluated in terms of internal resistance and uniformity of the emitted dose. It was observed that they present a mean resistance of 0.06 cmH2O0.5/(L/min) and the maximum emitted dose obtained was 68.9% for the inhaler with higher needle´s diameter (2 mm). Thus, this inhaler was used as a test and modified by the coating with a commonly-used force control agent, magnesium stearate, dried with supercritical carbon dioxide (scCO2) and the uniformity of delivered dose tests were repeated. The modified inhaler showed an increase in emitted dose from 68.9% to 71.3% for lactose and from 30.0% to 33.7% for Foradil.
Resumo:
Article
Resumo:
Wireless medical systems are comprised of four stages, namely the medical device, the data transport, the data collection and the data evaluation stages. Whereas the performance of the first stage is highly regulated, the others are not. This paper concentrates on the data transport stage and argues that it is necessary to establish standardized tests to be used by medical device manufacturers to provide comparable results concerning the communication performance of the wireless networks used to transport medical data. Besides, it suggests test parameters and procedures to be used to produce comparable communication performance results.
Resumo:
There are two main types of bone in the human body, trabecular and cortical bone. Cortical bone is primarily found on the outer surface of most bones in the body while trabecular bone is found in vertebrae and at the end of long bones (Ross 2007). Osteoporosis is a condition that compromises the structural integrity of trabecular bone, greatly reducing the ability of the bone to absorb energy from falls. The current method for diagnosing osteoporosis and predicting fracture risk is measurement of bone mineral density. Limitations of this method include dependence on the bone density measurement device and dependence on type of test and measurement location (Rubin 2005). Each year there are approximately 250,000 hip fractures in the United States due to osteoporosis (Kleerekoper 2006). Currently, the most common method for repairing a hip fracture is a hip fixation surgery. During surgery, a temporary guide wire is inserted to guide the permanent screw into place and then removed. It is believed that directly measuring this screw pullout force may result in a better assessment of bone quality than current indirect measurement techniques (T. Bowen 2008-2010, pers. comm.). The objective of this project is to design a device that can measure the force required to extract this guide wire. It is believed that this would give the surgeon a direct, quantitative measurement of bone quality at the site of the fixation. A first generation device was designed by a Bucknell Biomedical Engineering Senior Design team during the 2008- 2009 Academic Year. The first step of this project was to examine the device, conduct a thorough design analysis, and brainstorm new concepts. The concept selected uses a translational screw to extract the guide wire. The device was fabricated and underwent validation testing to ensure that the device was functional and met the required engineering specifications. Two tests were conducted, one to test the functionality of the device by testing if the device gave repeatable results, and the other to test the sensitivity of the device to misalignment. Guide wires were extracted from 3 materials, low density polyethylene, ultra high molecular weight polyethylene, and polypropylene and the force of extraction was measured. During testing, it was discovered that the spring in the device did not have a high enough spring constant to reach the high forces necessary for extracting the wires without excessive deflection of the spring. The test procedure was modified slightly so the wires were not fully threaded into the material. The testing results indicate that there is significant variation in the screw pullout force, up to 30% of the average value. This significant variation was attributed to problems in the testing and data collection, and a revised set of tests was proposed to better evaluate the performance of the device. The fabricated device is a fully-functioning prototype and further refinements and testing of the device may lead to a 3rd generation version capable of measuring the screw pullout force during hip fixation surgery.
Resumo:
BACKGROUND: Endovascular therapy is a rapidly expanding option for the treatment of patients with peripheral arterial disease (PAD), leading to a myriad of published studies reporting on various revascularization strategies. However, these reports are often difficult to interpret and compare because they do not utilize uniform clinical endpoint definitions. Moreover, few of these studies describe clinical outcomes from a patients' perspective. METHODS AND RESULTS: The DEFINE Group is a collaborative effort of an ad-hoc multidisciplinary team from various specialties involved in peripheral arterial disease therapy in Europe and the United States. DEFINE's goal was to arrive at a broad based consensus for baseline and endpoint definitions in peripheral endovascular revascularization trials for chronic lower limb ischemia. In this project, which started in 2006, the individual team members reviewed the existing pertinent literature. Following this, a series of telephone conferences and face-to-face meetings were held to agree upon definitions. Input was also obtained from regulatory (United States Food and Drug Administration) and industry (device manufacturers with an interest in peripheral endovascular revascularization) stakeholders, respectively. The efforts resulted in the current document containing proposed baseline and endpoint definitions in chronic lower limb PAD. Although the consensus has inevitably included certain arbitrary choices and compromises, adherence to these proposed standard definitions would provide consistency across future trials, thereby facilitating evaluation of clinical effectiveness and safety of various endovascular revascularization techniques. CONCLUSION: This current document is based on a broad based consensus involving relevant stakeholders from the medical community, industry and regulatory bodies. It is proposed that the consensus document may have value for study design of future clinical trials in chronic lower limb ischemia as well as for regulatory purposes.
Resumo:
Healthcare has been slow in using human factors principles to reduce medical errors. The Center for Devices and Radiological Health (CDRH) recognizes that a lack of attention to human factors during product development may lead to errors that have the potential for patient injury, or even death. In response to the need for reducing medication errors, the National Coordinating Council for Medication Errors Reporting and Prevention (NCC MERP) released the NCC MERP taxonomy that provides a standard language for reporting medication errors. This project maps the NCC MERP taxonomy of medication error to MedWatch medical errors involving infusion pumps. Of particular interest are human factors associated with medical device errors. The NCC MERP taxonomy of medication errors is limited in mapping information from MEDWATCH because of the focus on the medical device and the format of reporting.