963 resultados para Medical Image Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although a vast amount of life sciences data is generated in the form of images, most scientists still store images on extremely diverse and often incompatible storage media, without any type of metadata structure, and thus with no standard facility with which to conduct searches or analyses. Here we present a solution to unlock the value of scientific images. The Global Image Database (GID) is a web-based (http://www.g wer.ch/qv/gid/gid.htm) structured central repository for scientific annotated images. The GID was designed to manage images from a wide spectrum of imaging domains ranging from microscopy to automated screening. The annotations in the GID define the source experiment of the images by describing who the authors of the experiment are, when the images were created, the biological origin of the experimental sample and how the sample was processed for visualization. A collection of experimental imaging protocols provides details of the sample preparation, and labeling, or visualization procedures. In addition, the entries in the GID reference these imaging protocols with the probe sequences or antibody names used in labeling experiments. The GID annotations are searchable by field or globally. The query results are first shown as image thumbnail previews, enabling quick browsing prior to original-sized annotated image retrieval. The development of the GID continues, aiming at facilitating the management and exchange of image data in the scientific community, and at creating new query tools for mining image data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current image database metadata schemas require users to adopt a specific text-based vocabulary. Text-based metadata is good for searching but not for browsing. Existing image-based search facilities, on the other hand, are highly specialised and so suffer similar problems. Wexelblat's semantic dimensional spatial visualisation schemas go some way towards addressing this problem by making both searching and browsing more accessible to the user in a single interface. But the question of how and what initial metadata to enter a database remains. Different people see different things in an image and will organise a collection in equally diverse ways. However, we can find some similarity across groups of users regardless of their reasoning. For example, a search on Amazon.com returns other products also, based on an averaging of how users navigate the database. In this paper, we report on applying this concept to a set of images for which we have visualised them using traditional methods and the Amazon.com method. We report on the findings of this comparative investigation in a case study setting involving a group of randomly selected participants. We conclude with the recommendation that in combination, the traditional and averaging methods would provide an enhancement to current database visualisation, searching, and browsing facilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach to building a CBIR-system for searching computer tomography images using the methods of wavelet-analysis is presented in this work. The index vectors are constructed on the basis of the local features of the image and on their positions. The purpose of the proposed system is to extract visually similar data from the individual personal records and from analogous analysis of other patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Segmentation is an important step in many medical imaging applications and a variety of image segmentation techniques exist. One group of segmentation algorithms is based on clustering concepts. In this article we investigate several fuzzy c-means based clustering algorithms and their application to medical image segmentation. In particular we evaluate the conventional hard c-means (HCM) and fuzzy c-means (FCM) approaches as well as three computationally more efficient derivatives of fuzzy c-means: fast FCM with random sampling, fast generalised FCM, and a new anisotropic mean shift based FCM. © 2010 by IJTS, ISDER.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pages from the Medical Education Database for Preliminary Accreditation 2006-2007 with notes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medical imaging technology and applications are continuously evolving, dealing with images of increasing spatial and temporal resolutions, which allow easier and more accurate medical diagnosis. However, this increase in resolution demands a growing amount of data to be stored and transmitted. Despite the high coding efficiency achieved by the most recent image and video coding standards in lossy compression, they are not well suited for quality-critical medical image compression where either near-lossless or lossless coding is required. In this dissertation, two different approaches to improve lossless coding of volumetric medical images, such as Magnetic Resonance and Computed Tomography, were studied and implemented using the latest standard High Efficiency Video Encoder (HEVC). In a first approach, the use of geometric transformations to perform inter-slice prediction was investigated. For the second approach, a pixel-wise prediction technique, based on Least-Squares prediction, that exploits inter-slice redundancy was proposed to extend the current HEVC lossless tools. Experimental results show a bitrate reduction between 45% and 49%, when compared with DICOM recommended encoders, and 13.7% when compared with standard HEVC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes is a rapidly increasing worldwide problem which is characterised by defective metabolism of glucose that causes long-term dysfunction and failure of various organs. The most common complication of diabetes is diabetic retinopathy (DR), which is one of the primary causes of blindness and visual impairment in adults. The rapid increase of diabetes pushes the limits of the current DR screening capabilities for which the digital imaging of the eye fundus (retinal imaging), and automatic or semi-automatic image analysis algorithms provide a potential solution. In this work, the use of colour in the detection of diabetic retinopathy is statistically studied using a supervised algorithm based on one-class classification and Gaussian mixture model estimation. The presented algorithm distinguishes a certain diabetic lesion type from all other possible objects in eye fundus images by only estimating the probability density function of that certain lesion type. For the training and ground truth estimation, the algorithm combines manual annotations of several experts for which the best practices were experimentally selected. By assessing the algorithm’s performance while conducting experiments with the colour space selection, both illuminance and colour correction, and background class information, the use of colour in the detection of diabetic retinopathy was quantitatively evaluated. Another contribution of this work is the benchmarking framework for eye fundus image analysis algorithms needed for the development of the automatic DR detection algorithms. The benchmarking framework provides guidelines on how to construct a benchmarking database that comprises true patient images, ground truth, and an evaluation protocol. The evaluation is based on the standard receiver operating characteristics analysis and it follows the medical practice in the decision making providing protocols for image- and pixel-based evaluations. During the work, two public medical image databases with ground truth were published: DIARETDB0 and DIARETDB1. The framework, DR databases and the final algorithm, are made public in the web to set the baseline results for automatic detection of diabetic retinopathy. Although deviating from the general context of the thesis, a simple and effective optic disc localisation method is presented. The optic disc localisation is discussed, since normal eye fundus structures are fundamental in the characterisation of DR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Statistical shape models are widely used in biomedical research. They are routinely implemented for automatic image segmentation or object identification in medical images. In these fields, however, the acquisition of the large training datasets, required to develop these models, is usually a time-consuming process. Even after this effort, the collections of datasets are often lost or mishandled resulting in replication of work. Objective: To solve these problems, the Virtual Skeleton Database (VSD) is proposed as a centralized storage system where the data necessary to build statistical shape models can be stored and shared. Methods: The VSD provides an online repository system tailored to the needs of the medical research community. The processing of the most common image file types, a statistical shape model framework, and an ontology-based search provide the generic tools to store, exchange, and retrieve digital medical datasets. The hosted data are accessible to the community, and collaborative research catalyzes their productivity. Results: To illustrate the need for an online repository for medical research, three exemplary projects of the VSD are presented: (1) an international collaboration to achieve improvement in cochlear surgery and implant optimization, (2) a population-based analysis of femoral fracture risk between genders, and (3) an online application developed for the evaluation and comparison of the segmentation of brain tumors. Conclusions: The VSD is a novel system for scientific collaboration for the medical image community with a data-centric concept and semantically driven search option for anatomical structures. The repository has been proven to be a useful tool for collaborative model building, as a resource for biomechanical population studies, or to enhance segmentation algorithms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we take advantage of association rule mining to support two types of medical systems: the Content-based Image Retrieval (CBIR) systems and the Computer-Aided Diagnosis (CAD) systems. For content-based retrieval, association rules are employed to reduce the dimensionality of the feature vectors that represent the images and to improve the precision of the similarity queries. We refer to the association rule-based method to improve CBIR systems proposed here as Feature selection through Association Rules (FAR). To improve CAD systems, we propose the Image Diagnosis Enhancement through Association rules (IDEA) method. Association rules are employed to suggest a second opinion to the radiologist or a preliminary diagnosis of a new image. A second opinion automatically obtained can either accelerate the process of diagnosing or to strengthen a hypothesis, increasing the probability of a prescribed treatment be successful. Two new algorithms are proposed to support the IDEA method: to pre-process low-level features and to propose a preliminary diagnosis based on association rules. We performed several experiments to validate the proposed methods. The results indicate that association rules can be successfully applied to improve CBIR and CAD systems, empowering the arsenal of techniques to support medical image analysis in medical systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background - Medical image perception research relies on visual data to study the diagnostic relationship between observers and medical images. A consistent method to assess visual function for participants in medical imaging research has not been developed and represents a significant gap in existing research. Methods - Three visual assessment factors appropriate to observer studies were identified: visual acuity, contrast sensitivity, and stereopsis. A test was designed for each, and 30 radiography observers (mean age 31.6 years) participated in each test. Results - Mean binocular visual acuity for distance was 20/14 for all observers. The difference between observers who did and did not use corrective lenses was not statistically significant (P = .12). All subjects had a normal value for near visual acuity and stereoacuity. Contrast sensitivity was better than population norms. Conclusion - All observers had normal visual function and could participate in medical imaging visual analysis studies. Protocols of evaluation and populations norms are provided. Further studies are necessary to understand fully the relationship between visual performance on tests and diagnostic accuracy in practice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents automated segmentation of structuresin the Head and Neck (H\&N) region, using an activecontour-based joint registration and segmentation model.A new atlas selection strategy is also used. Segmentationis performed based on the dense deformation fieldcomputed from the registration of selected structures inthe atlas image that have distinct boundaries, onto thepatient's image. This approach results in robustsegmentation of the structures of interest, even in thepresence of tumors, or anatomical differences between theatlas and the patient image. For each patient, an atlasimage is selected from the available atlas-database,based on the similarity metric value, computed afterperforming an affine registration between each image inthe atlas-database and the patient's image. Unlike manyof the previous approaches in the literature, thesimilarity metric is not computed over the entire imageregion; rather, it is computed only in the regions ofsoft tissue structures to be segmented. Qualitative andquantitative evaluation of the results is presented.