954 resultados para Mechanics (Persons)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inscriptions: Verso: [stamped] Photograph by Freda Leinwand. [463 West Street, Studio 229G, New York, NY 10014].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inscriptions: Verso: [stamped] Photograph by Freda Leinwand. [463 West Street, Studio 229G, New York, NY 10014].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inscriptions: Verso: [stamped] Photograph by Freda Leinwand. [463 West Street, Studio 229G, New York, NY 10014].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anatomy and microstructure of the spine and in particular the intervertebral disc are intimately linked to how they operate in vivo and how they distribute loads to the adjacent musculature and bony anatomy. The degeneration of the intervertebral discs may be characterised by a loss of hydration, loss of disc height, a granular texture and the presence of annular lesions. As such, degeneration of the intervertebral discs compromises the mechanical integrity of their components and results in adaption and modification in the mechanical means by which loads are distributed between adjacent spinal motion segments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accuracy of data derived from linked-segment models depends on how well the system has been represented. Previous investigations describing the gait of persons with partial foot amputation did not account for the unique anthropometry of the residuum or the inclusion of a prosthesis and footwear in the model and, as such, are likely to have underestimated the magnitude of the peak joint moments and powers. This investigation determined the effect of inaccuracies in the anthropometric input data on the kinetics of gait. Toward this end, a geometric model was developed and validated to estimate body segment parameters of various intact and partial feet. These data were then incorporated into customized linked-segment models, and the kinetic data were compared with that obtained from conventional models. Results indicate that accurate modeling increased the magnitude of the peak hip and knee joint moments and powers during terminal swing. Conventional inverse dynamic models are sufficiently accurate for research questions relating to stance phase. More accurate models that account for the anthropometry of the residuum, prosthesis, and footwear better reflect the work of the hip extensors and knee flexors to decelerate the limb during terminal swing phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the on-road driving performance of persons with homonymous hemianopia or quadrantanopia in comparison to age-matched controls with normal visual fields. Methods: Participants were 22 hemianopes and eight quadrantanopes (mean age 53 years) and 30 persons with normal visual fields (mean age 52 years) and were either current drivers or aiming to resume driving. All participants completed a battery of tests of vision (ETDRS visual acuity, Pelli-Robson letter contrast sensitivity, Humphrey visual fields), cognitive tests (trials A and B, Mini Mental State Examination, Digit Symbol Substitution) and an on-road driving assessment. Driving performance was assessed in a dual-brake vehicle with safety monitored by a certified driving rehabilitation specialist. Backseat evaluators masked to the clinical characteristics of participants independently rated driving performance along a 22.7 kilometre route involving urban and interstate driving. Results: Seventy-three per cent of the hemianopes, 88 per cent of quadrantanopes and all of the drivers with normal fields received safe driving ratings. Those hemianopic and quadrantanopic drivers rated as unsafe tended to have problems with maintaining appropriate lane position, steering steadiness and gap judgment compared to controls. Unsafe driving was associated with slower visual processing speed and impairments in contrast sensitivity, visual field sensitivity and executive function. Conclusions: Our findings suggest that some drivers with hemianopia or quadrantanopia are capable of safe driving performance, when compared to those of the same age with normal visual fields. This finding has important implications for the assessment of fitness to drive in this population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A point interpolation method with locally smoothed strain field (PIM-LS2) is developed for mechanics problems using a triangular background mesh. In the PIM-LS2, the strain within each sub-cell of a nodal domain is assumed to be the average strain over the adjacent sub-cells of the neighboring element sharing the same field node. We prove theoretically that the energy norm of the smoothed strain field in PIM-LS2 is equivalent to that of the compatible strain field, and then prove that the solution of the PIM- LS2 converges to the exact solution of the original strong form. Furthermore, the softening effects of PIM-LS2 to system and the effects of the number of sub-cells that participated in the smoothing operation on the convergence of PIM-LS2 are investigated. Intensive numerical studies verify the convergence, softening effects and bound properties of the PIM-LS2, and show that the very ‘‘tight’’ lower and upper bound solutions can be obtained using PIM-LS2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporotic spinal fractures are a major concern in ageing Western societies. This study develops a multi-scale finite element (FE) model of the osteoporotic lumbar vertebral body to study the mechanics of vertebral compression fracture at both the apparent (whole vertebral body) and micro-structural (internal trabecular bone core)levels. Model predictions were verified against experimental data, and found to provide a reasonably good representation of the mechanics of the osteoporotic vertebral body. This novel modelling methodology will allow detailed investigation of how trabecular bone loss in osteoporosis affects vertebral stiffness and strength in the lumbar spine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation about information modelling and artificial intelligence, semantic structure, cognitive processing and quantum theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuum mechanics provides a mathematical framework for modelling the physical stresses experienced by a material. Recent studies show that physical stresses play an important role in a wide variety of biological processes, including dermal wound healing, soft tissue growth and morphogenesis. Thus, continuum mechanics is a useful mathematical tool for modelling a range of biological phenomena. Unfortunately, classical continuum mechanics is of limited use in biomechanical problems. As cells refashion the �bres that make up a soft tissue, they sometimes alter the tissue's fundamental mechanical structure. Advanced mathematical techniques are needed in order to accurately describe this sort of biological `plasticity'. A number of such techniques have been proposed by previous researchers. However, models that incorporate biological plasticity tend to be very complicated. Furthermore, these models are often di�cult to apply and/or interpret, making them of limited practical use. One alternative approach is to ignore biological plasticity and use classical continuum mechanics. For example, most mechanochemical models of dermal wound healing assume that the skin behaves as a linear viscoelastic solid. Our analysis indicates that this assumption leads to physically unrealistic results. In this thesis we present a novel and practical approach to modelling biological plasticity. Our principal aim is to combine the simplicity of classical linear models with the sophistication of plasticity theory. To achieve this, we perform a careful mathematical analysis of the concept of a `zero stress state'. This leads us to a formal de�nition of strain that is appropriate for materials that undergo internal remodelling. Next, we consider the evolution of the zero stress state over time. We develop a novel theory of `morphoelasticity' that can be used to describe how the zero stress state changes in response to growth and remodelling. Importantly, our work yields an intuitive and internally consistent way of modelling anisotropic growth. Furthermore, we are able to use our theory of morphoelasticity to develop evolution equations for elastic strain. We also present some applications of our theory. For example, we show that morphoelasticity can be used to obtain a constitutive law for a Maxwell viscoelastic uid that is valid at large deformation gradients. Similarly, we analyse a morphoelastic model of the stress-dependent growth of a tumour spheroid. This work leads to the prediction that a tumour spheroid will always be in a state of radial compression and circumferential tension. Finally, we conclude by presenting a novel mechanochemical model of dermal wound healing that takes into account the plasticity of the healing skin.