1000 resultados para Mecânica dos fluidos computacional


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta publicacion contiene unos apuntes para la parte de Mecánica de Fluidos de las asignaturas de la ETSAM, junto con cierta cantidad de material adicional que excede el ámbito del curso. Aunque está lejos de ser completa y de estar libre de errores, el autor espera sea útil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta publicacion contiene unos apuntes para la parte de Mecánica de Fluidos de las asignaturas de la ETSAM, junto con cierta cantidad de material adicional que excede el ámbito del curso. Aunque está lejos de ser completa y de estar libre de errores, el autor espera sea útil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os parques de estacionamento cobertos estão obrigados por legislação a terem sistemas de desenfumagem. Assim, nesta dissertação desenvolve-se um procedimento computacional para a analise e verificação de funcionamento de sistemas de desenfumagem com ventiladores de impulso para parques de estacionamento, recorrendo ao software de mecânica dos fluidos computacional OpenFOAM. Actualmente nos sistemas de desenfumagem de parques de estacionamento estão a ser aplicados ventiladores de impulso. Este tipo de ventiladores não estão contemplados pela legislação em vigor. Assim, para serem utilizados é necessário verificar se estes podem substituir as redes de condutas. A verificação do funcionamento de sistemas de desenfumagem com ventiladores de impulso e efectuada com recurso a programas de simulação de mecânica dos fluidos computacional. O software OpenFOAM não tem tutoriais para ventiladores de impulso. Assim, foi executado um procedimento para validação dos ventiladores de impulso. A validação consistiu em reproduzir-se uma experiência executada por Giesen et al. (2011). Executaram-se várias simulações com diferentes modelos de turbulência, verificando-se que o programa buoyantpimplefoam do software OpenFOAM ao utilizar o modelo de turbulência k -ɛ simulou quase na perfeição os ventiladores de impulso. O desenvolvimento do procedimento computacional foi executado para um parque de estacionamento com uma geometria bastante complexa. O parque de estacionamento foi criado com um software em 3D e posteriormente inserido numa malha j a criada com as dimensões exteriores do parque. Foram estipuladas as condições de fronteira e executou-se uma simulação de seiscentos segundos com parâmetros determinados previamente. O processamento da simulação teve a duração de aproximadamente oito dias. Dos resultados obtidos concluiu-se que o procedimento computacional apresentado simula adequadamente sistemas de desenfumagem em parques de estacionamento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento - Leaders for Technical Industries (LTI) - MIT Portugal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La inmensa mayoría de los flujos de relevancia ingenieril permanecen sin estudiar en el marco de la teoría de estabilidad global. Esto es debido a dos razones fundamentalmente, las dificultades asociadas con el análisis de los flujos turbulentos y los inmensos recursos computacionales requeridos para obtener la solución del problema de autovalores asociado al análisis de inestabilidad de flujos tridimensionales, también conocido como problema TriGlobal. En esta tesis se aborda el problema asociado con la tridimensionalidad. Se ha desarrollado una metodología general para obtener soluciones de problemas de análisis modal de las inestabilidades lineales globales mediante el acoplamiento de métodos de evolución temporal, desarrollados en este trabajo, con códigos de mecánica de fluidos computacional de segundo orden, utilizados de forma general en la industria. Esta metodología consiste en la resolución del problema de autovalores asociado al análisis de inestabilidad mediante métodos de proyección en subespacios de Krylov, con la particularidad de que dichos subespacios son generados por medio de la integración temporal de un vector inicial usando cualquier código de mecánica de fluidos computacional. Se han elegido tres problemas desafiantes en función de la exigencia de recursos computacionales necesarios y de la complejidad física para la demostración de la presente metodología: (i) el flujo en el interior de una cavidad tridimensional impulsada por una de sus tapas, (ii) el flujo alrededor de un cilindro equipado con aletas helicoidales a lo largo su envergadura y (iii) el flujo a través de una cavidad abierta tridimensinal en ausencia de homogeneidades espaciales. Para la validación de la tecnología se ha obtenido la solución del problema TriGlobal asociado al flujo en la cavidad tridimensional, utilizando el método de evolución temporal desarrollado acoplado con los operadores numéricos de flujo incompresible del código CFD OpenFOAM (código libre). Los resultados obtenidos coinciden plentamente con la literatura. La aplicación de esta metodología al estudio de inestabilidades globales de flujos abiertos tridimensionales ha proporcionado por primera vez, información sobre la transición tridimensional de estos flujos. Además, la metodología ha sido adaptada para resolver problemas adjuntos TriGlobales, permitiendo el control de flujo basado en modificaciones de las inestabilidades globales. Finalmente, se ha demostrado que la cantidad moderada de los recursos computacionales requeridos para la solución del problema de valor propio TriGlobal usando este método numérico, junto a su versatilidad al poder acoplarse a cualquier código aerodinámico, permite la realización de análisis de inestabilidad global y control de flujos complejos de relevancia industrial. Abstract Most flows of engineering relevance still remain unexplored in a global instability theory context for two reasons. First, because of the difficulties associated with the analysis of turbulent flows and, second, for the formidable computational resources required for the solution of the eigenvalue problem associated with the instability analysis of three-dimensional base flows, also known as TriGlobal problem. In this thesis, the problem associated with the three-dimensionality is addressed by means of the development of a general approach to the solution of large-scale global linear instability analysis by coupling a time-stepping approach with second order aerodynamic codes employed in industry. Three challenging flows in the terms of required computational resources and physical complexity have been chosen for demonstration of the present methodology; (i) the flow inside a wall-bounded three-dimensional lid-driven cavity, (ii) the flow past a cylinder fitted with helical strakes and (iii) the flow over a inhomogeneous three-dimensional open cavity. Results in excellent agreement with the literature have been obtained for the three-dimensional lid-driven cavity by using this methodology coupled with the incompressible solver of the open-source toolbox OpenFOAM®, which has served as validation. Moreover, significant physical insight of the instability of three-dimensional open flows has been gained through the application of the present time-stepping methodology to the other two cases. In addition, modifications to the present approach have been proposed in order to perform adjoint instability analysis of three-dimensional base flows and flow control; validation and TriGlobal examples are presented. Finally, it has been demonstrated that the moderate amount of computational resources required for the solution of the TriGlobal eigenvalue problem using this method enables the performance of instability analysis and control of flows of industrial relevance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las proyecciones muestran un incremento en la demanda de energía primaria a nivel global para los próximos diez años. Para disminuir los efectos adversos sobre el medio ambiente del uso de combustibles fósiles, las políticas energéticas de España y la Unión Europea tienen como uno de sus objetivos principales incrementar el uso fuentes renovables en la producción energética para el año 2020.La biomasa es una de las principales fuentes renovables para la generación de energía primaria en España. Sin embargo su alto contenido en humedad y su baja densidad energética entre otras características de este material, suponen desventajas para su uso directo como combustible. Los procesos de conversión termoquímica son una alternativa para la obtención de productos sólidos, líquidos y gases de mejor potencial energético utilizando biomasa como materia prima. Esta tesis doctoral tiene como objetivo general el estudio y la optimización de procesos de conversión termoquímica de biomasa. Para cumplir con este objetivo el trabajo combina análisis experimentales y de simulación de distintas tecnologías de transformación termoquímica de biomasa. Antes de iniciar los estudios experimentales de los procesos de transformación termoquímica, se realiza una caracterización química, física y combustible de ocho de biomasas de naturaleza lignocelulósica y amilácea. Esta caracterización incluye el análisis del comportamiento termoquímico utilizando las técnicas de termogravimetría (TG-DTG), TG-FTir y pirólisis analítica (Py-GC/MS). Después de la caracterización se seleccionan tres tipos de biomasas (madera de pino, hueso de aceituna y hueso de aguacate) que son utilizadas como materia prima en el estudio experimental de procesos de gasificación, torrefacción y pirólisis en distintos sistemas de reacción de escala de laboratorio. Estos estudios se realizan para optimizar las condiciones de operación de cada uno de los procesos y caracterizar los productos obtenidos. El trabajo realizado incluye el rediseño y puesta en marcha de un sistema de gasificación de lecho fluidizado así como de un sistema de torrefacción y pirólisis en horno rotatorio. Los estudios experimentales incluyen un análisis de distintas condiciones de operación (temperatura, composición atmosférica, tiempo de residencia, condiciones fluidomecánicas, tamaño de partícula del combustible, condiciones de condensación) con el objetivo de determinar las condiciones óptimas de operación de cada uno de los procesos analizados respecto de las características químicas, físicas y combustibles de los productos. Para la optimización de las condiciones de operación del sistema de gasificación de lecho fluidizado se realiza un análisis complementario del comportamiento hidrodinámico utilizando la metodología de análisis computacional fluidodinámico o mecánica de fluidos computacional (CFD). Los resultados obtenidos permiten determinar las condiciones óptimas de operación del sistema de reacción de lecho fluidizado. Finalmente, la tesis incluye el análisis de una planta comercial de gasificación localizada en Júndiz (Álava, España), centrándose en la caracterización del material particulado eliminado de la corriente de gas generado, con el objetivo de determinar su proceso de formación, características y establecer posibles aplicaciones comerciales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El programa Europeo HORIZON2020 en Futuras Ciudades Inteligentes establece como objetivo que el 20% de la energía eléctrica sea generada a partir de fuentes renovables. Este objetivo implica la necesidad de potenciar la generación de energía eólica en todos los ámbitos. La energía eólica reduce drásticamente las emisiones de gases de efecto invernadero y evita los riesgos geo-políticos asociados al suministro e infraestructuras energéticas, así como la dependencia energética de otras regiones. Además, la generación de energía distribuida (generación en el punto de consumo) presenta significativas ventajas en términos de elevada eficiencia energética y estimulación de la economía. El sector de la edificación representa el 40% del consumo energético total de la Unión Europea. La reducción del consumo energético en este área es, por tanto, una prioridad de acuerdo con los objetivos "20-20-20" en eficiencia energética. La Directiva 2010/31/EU del Parlamento Europeo y del Consejo de 19 de mayo de 2010 sobre el comportamiento energético de edificaciones contempla la instalación de sistemas de suministro energético a partir de fuentes renovables en las edificaciones de nuevo diseño. Actualmente existe una escasez de conocimiento científico y tecnológico acerca de la geometría óptima de las edificaciones para la explotación de la energía eólica en entornos urbanos. El campo tecnológico de estudio de la presente Tesis Doctoral es la generación de energía eólica en entornos urbanos. Específicamente, la optimization de la geometría de las cubiertas de edificaciones desde el punto de vista de la explotación del recurso energético eólico. Debido a que el flujo del viento alrededor de las edificaciones es exhaustivamente investigado en esta Tesis empleando herramientas de simulación numérica, la mecánica de fluidos computacional (CFD en inglés) y la aerodinámica de edificaciones son los campos científicos de estudio. El objetivo central de esta Tesis Doctoral es obtener una geometría de altas prestaciones (u óptima) para la explotación de la energía eólica en cubiertas de edificaciones de gran altura. Este objetivo es alcanzado mediante un análisis exhaustivo de la influencia de la forma de la cubierta del edificio en el flujo del viento desde el punto de vista de la explotación energética del recurso eólico empleando herramientas de simulación numérica (CFD). Adicionalmente, la geometría de la edificación convencional (edificio prismático) es estudiada, y el posicionamiento adecuado para los diferentes tipos de aerogeneradores es propuesto. La compatibilidad entre el aprovechamiento de las energías solar fotovoltaica y eólica también es analizado en este tipo de edificaciones. La investigación prosigue con la optimización de la geometría de la cubierta. La metodología con la que se obtiene la geometría óptima consta de las siguientes etapas: - Verificación de los resultados de las geometrías previamente estudiadas en la literatura. Las geometrías básicas que se someten a examen son: cubierta plana, a dos aguas, inclinada, abovedada y esférica. - Análisis de la influencia de la forma de las aristas de la cubierta sobre el flujo del viento. Esta tarea se lleva a cabo mediante la comparación de los resultados obtenidos para la arista convencional (esquina sencilla) con un parapeto, un voladizo y una esquina curva. - Análisis del acoplamiento entre la cubierta y los cerramientos verticales (paredes) mediante la comparación entre diferentes variaciones de una cubierta esférica en una edificación de gran altura: cubierta esférica estudiada en la literatura, cubierta esférica integrada geométricamente con las paredes (planta cuadrada en el suelo) y una cubierta esférica acoplada a una pared cilindrica. El comportamiento del flujo sobre la cubierta es estudiado también considerando la posibilidad de la variación en la dirección del viento incidente. - Análisis del efecto de las proporciones geométricas del edificio sobre el flujo en la cubierta. - Análisis del efecto de la presencia de edificaciones circundantes sobre el flujo del viento en la cubierta del edificio objetivo. Las contribuciones de la presente Tesis Doctoral pueden resumirse en: - Se demuestra que los modelos de turbulencia RANS obtienen mejores resultados para la simulación del viento alrededor de edificaciones empleando los coeficientes propuestos por Crespo y los propuestos por Bechmann y Sórensen que empleando los coeficientes estándar. - Se demuestra que la estimación de la energía cinética turbulenta del flujo empleando modelos de turbulencia RANS puede ser validada manteniendo el enfoque en la cubierta de la edificación. - Se presenta una nueva modificación del modelo de turbulencia Durbin k — e que reproduce mejor la distancia de recirculación del flujo de acuerdo con los resultados experimentales. - Se demuestra una relación lineal entre la distancia de recirculación en una cubierta plana y el factor constante involucrado en el cálculo de la escala de tiempo de la velocidad turbulenta. Este resultado puede ser empleado por la comunidad científica para la mejora del modelado de la turbulencia en diversas herramientas computacionales (OpenFOAM, Fluent, CFX, etc.). - La compatibilidad entre las energías solar fotovoltaica y eólica en cubiertas de edificaciones es analizada. Se demuestra que la presencia de los módulos solares provoca un descenso en la intensidad de turbulencia. - Se demuestran conflictos en el cambio de escala entre simulaciones de edificaciones a escala real y simulaciones de modelos a escala reducida (túnel de viento). Se demuestra que para respetar las limitaciones de similitud (número de Reynolds) son necesarias mediciones en edificaciones a escala real o experimentos en túneles de viento empleando agua como fluido, especialmente cuando se trata con geometrías complejas, como es el caso de los módulos solares. - Se determina el posicionamiento más adecuado para los diferentes tipos de aerogeneradores tomando en consideración la velocidad e intensidad de turbulencia del flujo. El posicionamiento de aerogeneradores es investigado en las geometrías de cubierta más habituales (plana, a dos aguas, inclinada, abovedada y esférica). - Las formas de aristas más habituales (esquina, parapeto, voladizo y curva) son analizadas, así como su efecto sobre el flujo del viento en la cubierta de un edificio de gran altura desde el punto de vista del aprovechamiento eólico. - Se propone una geometría óptima (o de altas prestaciones) para el aprovechamiento de la energía eólica urbana. Esta optimización incluye: verificación de las geometrías estudiadas en el estado del arte, análisis de la influencia de las aristas de la cubierta en el flujo del viento, estudio del acoplamiento entre la cubierta y las paredes, análisis de sensibilidad del grosor de la cubierta, exploración de la influencia de las proporciones geométricas de la cubierta y el edificio, e investigación del efecto de las edificaciones circundantes (considerando diferentes alturas de los alrededores) sobre el flujo del viento en la cubierta del edificio objetivo. Las investigaciones comprenden el análisis de la velocidad, la energía cinética turbulenta y la intensidad de turbulencia en todos los casos. ABSTRACT The HORIZON2020 European program in Future Smart Cities aims to have 20% of electricity produced by renewable sources. This goal implies the necessity to enhance the wind energy generation, both with large and small wind turbines. Wind energy drastically reduces carbon emissions and avoids geo-political risks associated with supply and infrastructure constraints, as well as energy dependence from other regions. Additionally, distributed energy generation (generation at the consumption site) offers significant benefits in terms of high energy efficiency and stimulation of the economy. The buildings sector represents 40% of the European Union total energy consumption. Reducing energy consumption in this area is therefore a priority under the "20-20-20" objectives on energy efficiency. The Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings aims to consider the installation of renewable energy supply systems in new designed buildings. Nowadays, there is a lack of knowledge about the optimum building shape for urban wind energy exploitation. The technological field of study of the present Thesis is the wind energy generation in urban environments. Specifically, the improvement of the building-roof shape with a focus on the wind energy resource exploitation. Since the wind flow around buildings is exhaustively investigated in this Thesis using numerical simulation tools, both computational fluid dynamics (CFD) and building aerodynamics are the scientific fields of study. The main objective of this Thesis is to obtain an improved (or optimum) shape of a high-rise building for the wind energy exploitation on the roof. To achieve this objective, an analysis of the influence of the building shape on the behaviour of the wind flow on the roof from the point of view of the wind energy exploitation is carried out using numerical simulation tools (CFD). Additionally, the conventional building shape (prismatic) is analysed, and the adequate positions for different kinds of wind turbines are proposed. The compatibility of both photovoltaic-solar and wind energies is also analysed for this kind of buildings. The investigation continues with the buildingroof optimization. The methodology for obtaining the optimum high-rise building roof shape involves the following stages: - Verification of the results of previous building-roof shapes studied in the literature. The basic shapes that are compared are: flat, pitched, shed, vaulted and spheric. - Analysis of the influence of the roof-edge shape on the wind flow. This task is carried out by comparing the results obtained for the conventional edge shape (simple corner) with a railing, a cantilever and a curved edge. - Analysis of the roof-wall coupling by testing different variations of a spherical roof on a high-rise building: spherical roof studied in the litera ture, spherical roof geometrically integrated with the walls (squared-plant) and spherical roof with a cylindrical wall. The flow behaviour on the roof according to the variation of the incident wind direction is commented. - Analysis of the effect of the building aspect ratio on the flow. - Analysis of the surrounding buildings effect on the wind flow on the target building roof. The contributions of the present Thesis can be summarized as follows: - It is demonstrated that RANS turbulence models obtain better results for the wind flow around buildings using the coefficients proposed by Crespo and those proposed by Bechmann and S0rensen than by using the standard ones. - It is demonstrated that RANS turbulence models can be validated for turbulent kinetic energy focusing on building roofs. - A new modification of the Durbin k — e turbulence model is proposed in order to obtain a better agreement of the recirculation distance between CFD simulations and experimental results. - A linear relationship between the recirculation distance on a flat roof and the constant factor involved in the calculation of the turbulence velocity time scale is demonstrated. This discovery can be used by the research community in order to improve the turbulence modeling in different solvers (OpenFOAM, Fluent, CFX, etc.). - The compatibility of both photovoltaic-solar and wind energies on building roofs is demonstrated. A decrease of turbulence intensity due to the presence of the solar panels is demonstrated. - Scaling issues are demonstrated between full-scale buildings and windtunnel reduced-scale models. The necessity of respecting the similitude constraints is demonstrated. Either full-scale measurements or wind-tunnel experiments using water as a medium are needed in order to accurately reproduce the wind flow around buildings, specially when dealing with complex shapes (as solar panels, etc.). - The most adequate position (most adequate roof region) for the different kinds of wind turbines is highlighted attending to both velocity and turbulence intensity. The wind turbine positioning was investigated for the most habitual kind of building-roof shapes (flat, pitched, shed, vaulted and spherical). - The most habitual roof-edge shapes (simple edge, railing, cantilever and curved) were investigated, and their effect on the wind flow on a highrise building roof were analysed from the point of view of the wind energy exploitation. - An optimum building-roof shape is proposed for the urban wind energy exploitation. Such optimization includes: state-of-the-art roof shapes test, analysis of the influence of the roof-edge shape on the wind flow, study of the roof-wall coupling, sensitivity analysis of the roof width, exploration of the aspect ratio of the building-roof shape and investigation of the effect of the neighbouring buildings (considering different surrounding heights) on the wind now on the target building roof. The investigations comprise analysis of velocity, turbulent kinetic energy and turbulence intensity for all the cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo foi motivado pela possibilidade de se empregar os conhecimentos da engenharia mecânica na solução de problemas de engenharia de alimentos por métodos numéricos, assim como pela utilização da dinâmica dos fluidos computacional (CFD) em mais um campo de pesquisa. A idéia básica foi a aplicação do método de elementos finitos na solução de problemas de escoamentos envolvendo mistura de diferentes componentes. Muitos alimentos apresentam-se como fluidos, e seu comportamento material pode ser newtoniano ou não newtoniano, às vezes descrito por relações constitutivas bastante complexas. Utilizou-se uma teoria de misturas apoiada nos conceitos de mecânica do contínuo para a modelagem mecânica do que se passou a considerar como um sistema multicomponente. Necessitou-se de uma detalhada revisão sobre os postulados clássicos da mecânica para que se pudesse recolocá-los, com alguma segurança e embasamento teórico, para sistemas multicomponentes. Tendo em mãos a modelagem do balanço de momentum e massa em sistemas multicomponentes, pôde-se aproximar estas equações através do método de elementos finitos. A literatura aponta que o método clássico de Galerkin não possui a eficiência necessária para a solução das equações de escoamento, que envolvem uma formulação mista onde se faz necessário tomar compatíveis os subespaços de velocidade e pressão, e também devido à natureza assimétrica da aceleração advectiva, o que também aparece como uma dificuldade na solução de problemas de advecçãodifusão, nos casos de advecção dominante. Assim, fez-se uso do método estabilizado tipo GLS, o qual supera as dificuldades enftentadas pelo método de Galerkin clássico em altos números de Reynolds, adicionando termos dependentes da malha, construídos de forma a aumentar a estabilidade da formulação de Galerkin original sem prejudicar sua consistência. Os resultados numéricos dividem-se em três categorias: problemas de transferência de quantidade de movimento para fluidos newtonianos, problemas de transferência de quantidade de movimento para fluidos com não linearidade material e problemas de advecção e difusão de massa em misturas. A comparação de algumas aproximações obtidas com as de outros autores se mostraram concordantes. A aproximação de problemas de fluidos segundo os modelos Carreau e Casson geraram os resultados esperados. A aproximação de um problema de injeção axial com mistura de dois fluidos produziu resultados coerentes, motivando a aplicação prática da aproximação por métodos estabilizados de problemas de misturas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pumping through progressing cavities system has been more and more employed in the petroleum industry. This occurs because of its capacity of elevation of highly viscous oils or fluids with great concentration of sand or other solid particles. A Progressing Cavity Pump (PCP) consists, basically, of a rotor - a metallic device similar to an eccentric screw, and a stator - a steel tube internally covered by a double helix, which may be rigid or deformable/elastomeric. In general, it is submitted to a combination of well pressure with the pressure generated by the pumping process itself. In elastomeric PCPs, this combined effort compresses the stator and generates, or enlarges, the clearance existing between the rotor and the stator, thus reducing the closing effect between their cavities. Such opening of the sealing region produces what is known as fluid slip or slippage, reducing the efficiency of the PCP pumping system. Therefore, this research aims to develop a transient three-dimensional computational model that, based on single-lobe PCP kinematics, is able to simulate the fluid-structure interaction that occurs in the interior of metallic and elastomeric PCPs. The main goal is to evaluate the dynamic characteristics of PCP s efficiency based on detailed and instantaneous information of velocity, pressure and deformation fields in their interior. To reach these goals (development and use of the model), it was also necessary the development of a methodology for generation of dynamic, mobile and deformable, computational meshes representing fluid and structural regions of a PCP. This additional intermediary step has been characterized as the biggest challenge for the elaboration and running of the computational model due to the complex kinematic and critical geometry of this type of pump (different helix angles between rotor and stator as well as large length scale aspect ratios). The processes of dynamic generation of meshes and of simultaneous evaluation of the deformations suffered by the elastomer are fulfilled through subroutines written in Fortan 90 language that dynamically interact with the CFX/ANSYS fluid dynamic software. Since a structural elastic linear model is employed to evaluate elastomer deformations, it is not necessary to use any CAE package for structural analysis. However, an initial proposal for dynamic simulation using hyperelastic models through ANSYS software is also presented in this research. Validation of the results produced with the present methodology (mesh generation, flow simulation in metallic PCPs and simulation of fluid-structure interaction in elastomeric PCPs) is obtained through comparison with experimental results reported by the literature. It is expected that the development and application of such a computational model may provide better details of the dynamics of the flow within metallic and elastomeric PCPs, so that better control systems may be implemented in the artificial elevation area by PCP

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La propuesta se divide en tres módulos. El primer módulo contiene cuatro unidades didácticas sobre la máquina y mecanismos. El segundo módulo contiene unidades sobre la estática y resistencia de materiales. Y el tercer módulo contiene unidades sobre la mecánica de fluidos.