951 resultados para McArdle Mouse Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of toxic cyanobacteria in drinking water reservoirs renders the need to develop treatment methods for the 'safe' removal of their associated toxins. Chlorine has been shown to successfully remove a range of cyanotoxins including microcystins, cylindrospermopsin and saxitoxins. Each cyanotoxin requires specific treatment parameters, particularly solution pH and free chlorine residual. However, currently there has not been any investigation into the toxicological effect of solutions treated for the removal of these cyanotoxins by chlorine. Using the P53(def) transgenic mouse model mate and female C57BL/6J hybrid mice were used to investigate potential cancer inducing effects from such oral dosing solutions. Both purified cyanotoxins and toxic cell-free extract cyanobacterial solutions were chlorinated and administered over 90 and 170 days (respectively) in drinking water. No increase in cancer was found in any treatment. The parent cyanotoxins, microcystins, cylindrospermopsin and saxitoxins were readily removed by chlorine. There was no significant increase in the disinfection byproducts trihalomethanes or haloacetic acids, levels found were well below guideline values. Histological examination identified no effect of treatment solutions except male mice treated with chlorinated cylindrospermopsin (as a cell free extract). In this instance 40% of males were found to have fatty vacuolation in their livers, cause unknown. It is recommended that further toxicology be undertaken on chlorinated cyanobacterial solutions, particularly for non-genotoxic carcinogenic compounds, for example the Tg. AC transgenic mouse model. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os Homens e os animais diferem grandemente nas suas respostas às infecções virais. Os vírus podem induzir, em alguns, sintomas ligeiros, enquanto que em outros podem provocar patologias graves mesmo mortais. Acumulam-se evidências que o património genético é um dos factores primordiais a condicionar e contribuir para a complexidade das interações vírus-hospedeiro. A identificação de genes com papel na resposta à infecção viral tornouse pois o tema de investigação de muitos laboratórios, com o objectivo de elucidar os processos fisiopatológicos que regem e determinam esse tipo de resposta. Neste artigo de revisão pretende-se ilustrar como o modelo murino têm sido utilizado para a identificação de genes de resistência viral, e como estes podem funcionar como base para a descoberta de genes homólogos em outras espécies. na elucidação dos mecanismos de resistência, e em novos componentes da reunir todos os genes de resistência viral descobertos em murganhos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helicobacter pylori (H. pylori) infection triggers a sequence of gastric alterations starting with an inflammation of the gastric mucosa that, in some cases, evolves to gastric cancer. Efficient vaccination has not been achieved, thus it is essential to find alternative therapies, particularly in the nutritional field. The current study evaluated whether curcumin could attenuate inflammation of the gastric mucosa due to H. pylori infection. Twenty-eight C57BL/6 mice, were inoculated with the H. pylori SS1 strain; ten non-infected mice were used as controls. H. pylori infection in live mice was followed-up using a modified 13C-Urea Breath Test (13C-UBT) and quantitative real-time polymerase chain reaction (PCR). Histologically confirmed, gastritis was observed in 42% of infected non-treated mice at both 6 and 18 weeks post-infection. These mice showed an up-regulation of the expression of inflammatory cytokines and chemokines, as well as of toll-like receptors (TLRs) and MyD88, at both time points. Treatment with curcumin decreased the expression of all these mediators. No inflammation was observed by histology in this group. Curcumin treatment exerted a significant anti-inflammatory effect in H. pylori-infected mucosa, pointing to the promising role of a nutritional approach in the prevention of H. pylori induced deleterious inflammation while the eradication or prevention of colonization by effective vaccine is not available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a marked decline in cognition and memory function. Increasing evidence highlights the essential role of neuroinflammatory and immune-related molecules, including those produced at the brain barriers, on brain immune surveillance, cellular dysfunction and amyloid beta (Aß) pathology in AD. Therefore, understanding the response at the brain barriers may unravel novel pathways of relevance for the pathophysiology of AD. Herein, we focused on the study of the choroid plexus (CP), which constitutes the blood-cerebrospinal fluid barrier, in aging and in AD. Specifically, we used the PDGFB-APPSwInd (J20) transgenic mouse model of AD, which presents early memory decline and progressive Aß accumulation, and littermate age-matched wild-type (WT) mice, to characterize the CP transcriptome at 3, 5-6 and 11-12months of age. The most striking observation was that the CP of J20 mice displayed an overall overexpression of type I interferon (IFN) response genes at all ages. Moreover, J20 mice presented a high expression of type II IFN genes in the CP at 3months, which became lower than WT at 5-6 and 11-12months. Importantly, along with a marked memory impairment and increased glial activation, J20 mice also presented a similar overexpression of type I IFN genes in the dorsal hippocampus at 3months. Altogether, these findings provide new insights on a possible interplay between type I and II IFN responses in AD and point to IFNs as targets for modulation in cognitive decline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes mellitus (DM) is a major cause of peripheral neuropathy. More than 220 million people worldwide suffer from type 2 DM, which will, in approximately half of them, lead to the development of diabetic peripheral neuropathy. While of significant medical importance, the pathophysiological changes present in DPN are still poorly understood. To get more insight into DPN associated with type 2 DM, we decided to use the rodent model of this form of diabetes, the db/db mice. During the in-vivo conduction velocity studies on these animals, we observed the presence of multiple spiking followed by a single stimulation. This prompted us to evaluate the excitability properties of db/db peripheral nerves. Ex-vivo electrophysiological evaluation revealed a significant increase in the excitability of db/db sciatic nerves. While the shape and kinetics of the compound action potential of db/db nerves were the same as for control nerves, we observed an increase in the after-hyperpolarization phase (AHP) under diabetic conditions. Using pharmacological inhibitors we demonstrated that both the peripheral nerve hyperexcitability (PNH) and the increased AHP were mostly mediated by the decreased activity of Kv1-channels. Importantly, we corroborated these data at the molecular level. We observed a strong reduction of Kv1.2 channel presence in the juxtaparanodal regions of teased fibers in db/db mice as compared to control mice. Quantification of the amount of both Kv1.2 isoforms in DRG neurons and in the endoneurial compartment of peripheral nerve by Western blotting revealed that less mature Kv1.2 was integrated into the axonal membranes at the juxtaparanodes. Our observation that peripheral nerve hyperexcitability present in db/db mice is at least in part a consequence of changes in potassium channel distribution suggests that the same mechanism also mediates PNH in diabetic patients. ∗Current address: Department of Physiology, UCSF, San Francisco, CA, USA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presenilin 1 (PS1) mutations are responsible for a majority of early onset familial Alzheimer's disease (FAD) cases, in part by increasing the production of Abeta peptides. However, emerging evidence suggests other possible effects of PS1 on synaptic dysfunction where PS1 might contribute to the pathology independent of Abeta. We chose to study the L286V mutation, an aggressive FAD mutation which has never been analyzed at the electrophysiological and morphological levels. In addition, we analyzed for the first time the long term effects of wild-type human PS1 overexpression. We investigated the consequences of the overexpression of either wild-type human PS1 (hPS1) or the L286V mutated PS1 variant (mutPS1) on synaptic functions by analyzing synaptic plasticity and associated spine density changes from 3 to 15 months of age. We found that mutPS1 induces a transient increase observed only in 4- to 5-month-old mutPS1 animals in NMDA receptor (NMDA-R)-mediated responses and LTP compared with hPS1 mice and nontransgenic littermates. The increase in synaptic functions is concomitant with an increase in spine density. With increasing age, however, we found that the overexpression of human wild-type PS1 progressively decreased NMDA-R-mediated synaptic transmission and LTP, without neurodegeneration. These results identify for the first time a transient increase in synaptic function associated with L286V mutated PS1 variant in an age-dependent manner. In addition, they support the view that the PS1 overexpression promotes synaptic dysfunction in an Abeta-independent manner and underline the crucial role of PS1 during both normal and pathological aging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intercellular communication is achieved at specialized regions of the plasma membrane by¦gap junctions. Gap junctions are transmembrane channels allowing direct contacts between¦the cytoplasms of neighboring cells. Each cell participates with one hemichannel, or¦connexon, made of six protein subunits named connexins. Thanks to these junctions, cells¦potentially share a pool of small molecules and metabolites, such as nucleotides, amino acids¦and second messengers.¦In an ischemic (i.e. non-perfused) territory of the brain, irreversible damage progresses over¦time from the centre of the most severe flow reduction to the periphery with less disturbed¦perfusion. Functionally impaired tissue can survive and recover if sufficient reperfusion is reestablished¦within a limited time period, which depends on various factors and mechanisms¦modulating the signaling pathways leading to cell death.¦Observations were made indicating the presence of electrical coupling between neurons which¦resist better to an ischemic insult. This electrical coupling is likely to be mediated by¦Connexin36 (Cx36), a neuron specific connexin isoform. It was demonstrated in the past that¦global ischemia induces a selective upregulation of Cx36 expression in regions with neurons¦that survive the insult whereas others undergo apoptosis and die. These observations raise the¦possibility that the neuronal gap junction Cx36 might play a role in the destiny of neurons¦after cerebral ischemia.¦The aim of this work was to characterize the regulation of Connexin36 in a mouse model of¦transient focal cerebral ischemia by immunofluorescence and Western blot analysis. Our¦immunofluorescence results suggest a specific increase in Cx36 in the penumbral region of¦the ischemic hemisphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The t(8;21) chromosomal translocation activates aberrant expression of the AML1-ETO (AE) fusion protein and is commonly associated with core binding factor acute myeloid leukaemia (CBF AML). Combining a conditional mouse model that closely resembles the slow evolution and the mosaic AE expression pattern of human t(8;21) CBF AML with global transcriptome sequencing, we find that disease progression was characterized by two principal pathogenic mechanisms. Initially, AE expression modified the lineage potential of haematopoietic stem cells (HSCs), resulting in the selective expansion of the myeloid compartment at the expense of normal erythro- and lymphopoiesis. This lineage skewing was followed by a second substantial rewiring of transcriptional networks occurring in the trajectory to manifest leukaemia. We also find that both HSC and lineage-restricted granulocyte macrophage progenitors (GMPs) acquired leukaemic stem cell (LSC) potential being capable of initiating and maintaining the disease. Finally, our data demonstrate that long-term expression of AE induces an indolent myeloproliferative disease (MPD)-like myeloid leukaemia phenotype with complete penetrance and that acute inactivation of AE function is a potential novel therapeutic option.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liddle's syndrome is a genetic form of hypertension linked to Na(+) retention caused by activating mutations in the COOH terminus of the beta or gamma subunit of the epithelial sodium channel (ENaC). In this study, we used the short-circuit current (I(sc)) method to investigate the effects of deamino-8-d-arginine vasopressin (dDAVP) on Na(+) and Cl(-) fluxes in primary cultures of cortical collecting ducts (CCDs) microdissected from the kidneys of mice with Liddle's syndrome carrying a stop codon mutation, corresponding to the beta-ENaC R(566) stop mutation (L) found in the original pedigree. Compared to wild-type (+/+) CCD cells, untreated L/+ and L/L CCD cells exhibited 2.7- and 4.2-fold increases, respectively, in amiloride-sensitive (Ams) I(sc), reflecting ENaC-dependent Na(+) absorption. Short-term incubation with dDAVP caused a rapid and significant increase (approximately 2-fold) in Ams I(sc) in +/+, but not in L/+ or L/L CCD cells. In sharp contrast, dDAVP induced a greater increase in 5-nitro-2-(3-phenylpropamino)benzoate (NPPB)-inhibited apical Cl(-) currents in amiloride-treated L/L and L/+ cells than in their +/+ counterparts. I(sc) recordings performed under apical ion substituted conditions revealed that the dDAVP-stimulated apical secretion of Cl(-), which was absent in cultured CCDs lacking CFTR, was 1.8-fold greater in L/+ and 3.7-fold greater in L/L CCD cells than in their +/+ CCD counterparts. After the basal membrane had been permeabilized with nystatin and a basal-to-apical Cl(-) gradient had been imposed, dDAVP also stimulated larger Cl(-) currents across L/L and L/+ CCD layers than +/+ CCD layers. These findings demonstrate that vasopressin stimulates greater apical CFTR Cl(-) conductance in the renal CCD cells of mice with Liddle's syndrome than in wild-type mice. This effect could contribute to the enhanced NaCl reabsorption observed in the distal nephron of patients with Liddle's syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Huntington's disease (HD), the expansion of polyglutamine (polyQ) repeats at the N terminus of the ubiquitous protein huntingtin (htt) leads to neurodegeneration in specific brain areas. Neurons degenerating in HD develop synaptic dysfunctions. However, it is unknown whether mutant htt impacts synaptic function in general. To investigate that, we have focused on the nerve terminals of motor neurons that typically do not degenerate in HD. Here, we have studied synaptic transmission at the neuromuscular junction of transgenic mice expressing a mutant form of htt (R6/1 mice). We have found that the size and frequency of miniature endplate potentials are similar in R6/1 and control mice. In contrast, the amplitude of evoked endplate potentials in R6/1 mice is increased compared to controls. Consistent with a presynaptic increase of release probability, synaptic depression under high-frequency stimulation is higher in R6/1 mice. In addition, no changes were detected in the size and dynamics of the recycling synaptic vesicle pool. Moreover, we have found increased amounts of the synaptic vesicle proteins synaptobrevin 1,2/VAMP 1,2 and cysteine string protein-α, and the SNARE protein SNAP-25, concomitant with normal levels of other synaptic vesicle markers. Our results reveal that the transgenic expression of a mutant form of htt leads to an unexpected gain of synaptic function. That phenotype is likely not secondary to neurodegeneration and might be due to a primary deregulation in synaptic protein levels. Our findings could be relevant to understand synaptic toxic effects of proteins with abnormal polyQ repeats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Intimal hyperplasia (IH) is one of the leading causes of failure¦after vascular interventions. It involves the proliferation of smooth muscle¦cells (SMCs) and the production of extracellular fibrous matrix. Gap junctional¦communication, mediated by membrane connexins (Cx), participates to the¦control of proliferation and migration. In human and mice vessels, endothelial¦cells (ECs) express Cx37, Cx40 and Cx43, whereas SMCs are coupled by Cx43.¦We previously reported that Cx43 was increased in the SMCs of a human vein¦during the development of IH.¦In our experimental model of mice carotid artery ligation (CAL), luminal¦narrowing occurred by SMCs-rich neointima after 2-4 weeks of ligation.¦This experimental model of mice allows us to decipher the regulation of the¦cardiovascular connexins in the mouse.¦Methods: C57BL/6 mice were anesthetized and the left common carotid artery¦was dissected through a neck incision and ligated near the carotid bifurcation.¦The mice were then euthanized at 7, 14 and 28 days. Morphometric analyses¦were then performed with measurements of total area, lumen and intimal area¦and media thickness. Western blots, immunocytochemistry and quantitative¦RT-PCR were performed for Cx43, Cx40 and Cx37.¦Results: All animals recovered with no symptom of stroke. Morphometric¦analysis demonstrated that carotid ligation resulted in an initial increase (after¦7 days) of the total vessel area followed by its reduction (after 28 days). This¦phenomena was associated with a progressive increase in the intimal area and a¦consecutive decrease of the lumen. The media thickness was also increased after¦14 and 28 days. This neointima formation was associated to a marked increase¦in the expression of Cx43 at both protein and RNA levels. Concomitantly,¦Cx40 and Cx37 protein expression were reduced in the endothelium. This was¦confirmed by en face analyses showing reduced Cx37 and Cx40 levels in the¦endothelial cells covering the lesion.¦Conclusion: This study assessed the regulation of the cardiovascular connexins¦in the development of IH. This model will allow us to characterize the¦involvement of gap junctions in the IH. In turn, this understanding is¦instrumental for the development of new therapeutical tools, as well as for¦the evaluation of the effects of drugs and gene therapies of this disease for which¦there is no efficient therapy available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: In this study, we investigated the expression of the gene encoding beta-galactosidase (Glb)-1-like protein 3 (Glb1l3), a member of the glycosyl hydrolase 35 family, during retinal degeneration in the retinal pigment epithelium (RPE)-specific 65-kDa protein knockout (Rpe65(-/-)) mouse model of Leber congenital amaurosis (LCA). Additionally, we assessed the expression of the other members of this protein family, including beta-galactosidase-1 (Glb1), beta-galactosidase-1-like (Glb1l), and beta-galactosidase-1-like protein 2 (Glb1l2).Methods: The structural features of Glb1l3 were assessed using bioinformatic tools. mRNA expression of Glb-related genes was investigated by oligonucleotide microarray, real-time PCR, and reverse transcription (RT) -PCR. The localized expression of Glb1l3 was assessed by combined in situ hybridization and immunohistochemistry.Results: Glb1l3 was the only Glb-related member strongly downregulated in Rpe65(-/-) retinas before the onset and during progression of the disease. Glb1l3 mRNA was only expressed in the retinal layers and the RPE/choroid. The other Glb-related genes were ubiquitously expressed in different ocular tissues, including the cornea and lens. In the healthy retina, expression of Glb1l3 was strongly induced during postnatal retinal development; age-related increased expression persisted during adulthood and aging.Conclusions: These data highlight early-onset downregulation of Glb1l3 in Rpe65-related disease. They further indicate that impaired expression of Glb1l3 is mostly due to the absence of the chromophore 11-cis retinal, suggesting that Rpe65 deficiency may have many metabolic consequences in the underlying neuroretina.